Exploratory Data Analysis Coursera Quiz Answer [Updated Answers‼️] 2022

Hello Peers, Today we are going to share all week assessment and quizzes answers of Exploratory Data Analysis course launched by Coursera for totally free of cost✅✅✅. This is a certification course for every interested students.

In case you didn’t find this course for free, then you can apply for financial ads to get this course for totally free.

Checkout this article for“How to Apply for Financial Ads?”

Coursera, a India’s biggest learning platform which launched millions of free courses for students daily. These courses are from various recognized university, where industry experts and professors teaches in a very well manner and in a more understandable way.

Here, you will find Exploratory Data Analysis Exam Answers in Bold Color which are given below.

These answers are updated recently and are 100% correctanswers of all week, assessment and final exam answers of Exploratory Data Analysis from Coursera Free Certification Course.

Use “Ctrl+F” To Find Any Questions Answer. & For Mobile User, You Just Need To Click On Three dots In Your Browser & You Will Get A “Find” Option There. Use These Option to Get Any Random Questions Answer.

Apply Link – Exploratory Data Analysis

Exploratory Data Analysis Answer

Week 1 Quiz

1.
Question 1
Which of the following is a principle of analytic graphics?

1 point

  • Show box plots (univariate summaries)
  • Only do what your tools allow you to do
  • Show causality, mechanism, explanation
  • Make judicious use of color in your scatterplots
  • Don’t plot more than two variables at at time

1.

Which of the following is a principle of analytic graphics?

Make judicious use of color in your scatterplots (NO)

Don’t plot more than two variables at at time (NO)

Show box plots (univariate summaries) (NO)

Only do what your tools allow you to do (NO)

Show comparisons

2.
Question 2
What is the role of exploratory graphs in data analysis?

1 point

  • Axes, legends, and other details are clean and exactly detailed.
  • They are typically made very quickly.
  • Only a few are constructed.
  • They are made for formal presentations.

3.
Question 3
Which of the following is true about the base plotting system?

1 point

  • The system is most useful for conditioning plots
  • Plots are created and annotated with separate functions
  • Plots are typically created with a single function call
  • Margins and spacings are adjusted automatically depending on the type of plot and the data

4.
Question 4
Which of the following is an example of a valid graphics device in R?

1 point

  • The keyboard
  • A file folder
  • A Microsoft Word document
  • A PNG file
  • A socket connection

4.

Which of the following is an example of a valid graphics device in R?

A file folder (NO)

The computer screen

A Microsoft Word document (NO)

A socket connection (NO)

The keyboard (NO)

5.
Question 5
Which of the following is an example of a vector graphics device in R?

1 point

  • TIFF
  • GIF
  • Postscript
  • PNG
  • JPEG

5.

Which of the following is an example of a vector graphics device in R?

GIF

TIFF

SVG

PNG

JPEG

6.
Question 6
Bitmapped file formats can be most useful for

1 point

  • Scatterplots with many many points
  • Plots that require animation or interactivity
  • Plots that are not scaled to a specific resolution
  • Plots that may need to be resized

7.
Question 7
Which of the following functions is typically used to add elements to a plot in the base graphics system?

1 point

  • hist()
  • boxplot()
  • plot()
  • text()

7.

Which of the following functions is typically used to add elements to a plot in the base graphics system?

hist()

plot()

points()

boxplot()

8.
Question 8
Which function opens the screen graphics device for the Mac?

1 point

  • quartz()
  • bitmap()
  • pdf()
  • png()

8.

Which function opens the screen graphics device on Windows?

postscript()

windows()

jpeg()

xfig()

9.
Question 9
What does the ‘pch’ option to par() control?

1 point

  • the plotting symbol/character in the base graphics system
  • the line width in the base graphics system
  • the orientation of the axis labels on the plot
  • the size of the plotting symbol in a scatterplot

9. What does the ‘pch’ option to par() control?

  • the size of the plotting symbol in a scatterplot
  • the plotting symbol/character in the base graphics system
  • the orientation of the axis labels on the plot
  • the line width in the base graphics system

10.
Question 10
If I want to save a plot to a PDF file, which of the following is a correct way of doing that?

1 point

  • Construct the plot on the screen device and then copy it to a PDF file with dev.copy2pdf()
  • Construct the plot on the PNG device with png(), then copy it to a PDF with dev.copy2pdf().
  • Open the screen device with quartz(), construct the plot, and then close the device with dev.off().
  • Open the PostScript device with postscript(), construct the plot, then close the device with dev.off().
Peer-graded Assignment: Course Project 1

Week 1 Assignment :

https://github.com/a-tagliente/ExData_Plotting1

Week– 2

1.
Question 1
Under the lattice graphics system, what do the primary plotting functions like xyplot() and bwplot() return?

1 point

  • an object of class “plot”
  • an object of class “trellis”
  • an object of class “lattice”
  • nothing; only a plot is made

2.
Question 2
What is produced by the following code?

123
library(nlme)
library(lattice)
xyplot(weight ~ Time | Diet, BodyWeight)
1 point

  • A set of 16 panels showing the relationship between weight and time for each rat.
  • A set of 11 panels showing the relationship between weight and diet for each time.
  • A set of 3 panels showing the relationship between weight and time for each rat.
  • A set of 3 panels showing the relationship between weight and time for each diet.

3.
Question 3
Annotation of plots in any plotting system involves adding points, lines, or text to the plot, in addition to customizing axis labels or adding titles. Different plotting systems have different sets of functions for annotating plots in this way.

Which of the following functions can be used to annotate the panels in a multi-panel lattice plot?

1 point

  • panel.lmline()
  • lines()
  • points()
  • axis()

3. Annotation of plots in any plotting system involves adding points, lines, or text to the plot, in addition to customizing axis labels or adding titles. Different plotting systems have different sets of functions for annotating plots in this way.

Which of the following functions can be used to annotate the panels in a multi-panel lattice plot?

  • axis()
  • text()
  • panel.abline()
  • points()
  • lines()

4.
Question 4
The following code does NOT result in a plot appearing on the screen device.

1234
library(lattice)
library(datasets)
data(airquality)
p <- xyplot(Ozone ~ Wind | factor(Month), data = airquality)
Which of the following is an explanation for why no plot appears?

1 point

  • The object ‘p’ has not yet been printed with the appropriate print method.
  • There is a syntax error in the call to xyplot().
  • The variables being plotted are not found in that dataset.
  • The xyplot() function, by default, sends plots to the PDF device.

5.
Question 5
In the lattice system, which of the following functions can be used to finely control the appearance of all lattice plots?

1 point

  • trellis.par.set()
  • splom()
  • par()
  • print.trellis()

6.
Question 6
What is ggplot2 an implementation of?

1 point

  • a 3D visualization system
  • the S language originally developed by Bell Labs
  • the base plotting system in R
  • the Grammar of Graphics developed by Leland Wilkinson

7.
Question 7
Load the `airquality’ dataset form the datasets package in R

12
library(datasets)
data(airquality)
I am interested in examining how the relationship between ozone and wind speed varies across each month. What would be the appropriate code to visualize that using ggplot2?

1 point

  • 1
    qplot(Wind, Ozone, data = airquality, facets = . ~ factor(Month))
  • 1
    qplot(Wind, Ozone, data = airquality)
  • 12
    airquality = transform(airquality, Month = factor(Month))
    qplot(Wind, Ozone, data = airquality, facets = . ~ Month)
  • 1
    qplot(Wind, Ozone, data = airquality, geom = “smooth”)

8.
Question 8
What is a geom in the ggplot2 system?

1 point

  • a method for mapping data to attributes like color and size
  • a statistical transformation
  • a method for making conditioning plots
  • a plotting object like point, line, or other shape

9.
Question 9
When I run the following code I get an error:

1234
library(ggplot2)
library(ggplot2movies)
g <- ggplot(movies, aes(votes, rating))
print(g)
I was expecting a scatterplot of ‘votes’ and ‘rating’ to appear. What’s the problem?

1 point

  • The object ‘g’ does not have a print method.
  • The dataset is too large and hence cannot be plotted to the screen.
  • There is a syntax error in the call to ggplot.
  • ggplot does not yet know what type of layer to add to the plot.

10.
Question 10
The following code creates a scatterplot of ‘votes’ and ‘rating’ from the movies dataset in the ggplot2 package. After loading the ggplot2 package with the library() function, I can run

1
qplot(votes, rating, data = movies)
How can I modify the the code above to add a smoother to the scatterplot?

1 point

qplot(votes, rating, data = movies) + geom_smooth()

Week- 4

Peer-graded Assignment: Course Project 2

1.

plot1

PROMPT
Copy and paste the R code file for the plot uploaded in the previous question.

# libraries
require(utils)
require(cairoDevice) # anti-aliasing figure
# download, load data and subset
fileUrl <-
‘https://d396qusza40orc.cloudfront.net/exdata%2Fdata
%2FNEI_data.zip’
download.file(fileUrl,
destfile = ‘./Data.zip’,
method = ‘curl’, quiet = T)
if(file.exists(‘./Data.zip’)) {
# Extract data file
unzip(‘./Data.zip’)
# Delete original Zip file if it exists
invisible(file.remove(‘./Data.zip’))
}
## This first line will likely take a few seconds. Be
patient!
NEI <- readRDS(“summarySCC_PM25.rds”)
SCC <- readRDS(“Source_Classification_Code.rds”)
# Delete data files .rds
if(all(file.exists(‘./summarySCC_PM25.rds’,
‘Source_Classification_Code.rds’))) {
invisible(file.remove(‘./summarySCC_PM25.rds’,
‘Source_Classification_Code.rds’))
}
# Create the png
png(‘./plot1.png’, width = 500, height = 450,
res = 55, type = ‘cairo’) # default is 480px X 480px
# Make Plot
with(aggregate(Emissions ~ year, NEI, sum),
plot(Emissions~year, pch = 18,
xlab = ”, ylab = ‘Total PM2.5 Emissions (tons)’,
main = ‘Total PM2.5 Emissions by Year’,
col = “blue”, type = “b”, xlim = c(1999, 2008),
lty = 2, lwd = 1.5, lab = c(10, 5, 7)))
# Close png file
dev.off()

2.

plot2

PROMPT

Copy and paste the R code file for the plot uploaded in the previous question.

# libraries
require(utils)
require(cairoDevice) # anti-aliasing figure
# download, load data and subset
fileUrl <-
‘https://d396qusza40orc.cloudfront.net/exdata%2Fdata
%2FNEI_data.zip’
download.file(fileUrl,
destfile = ‘./Data.zip’,
method = ‘curl’, quiet = T)
if(file.exists(‘./Data.zip’)) {
# Extract data file
unzip(‘./Data.zip’)
# Delete original Zip file if it exists
invisible(file.remove(‘./Data.zip’))
}
## This first line will likely take a few seconds. Be
patient!
NEI <- readRDS(“summarySCC_PM25.rds”)
SCC <- readRDS(“Source_Classification_Code.rds”)
# Delete data files .rds
if(all(file.exists(‘./summarySCC_PM25.rds’,
‘Source_Classification_Code.rds’))) {
invisible(file.remove(‘./summarySCC_PM25.rds’,
‘Source_Classification_Code.rds’))) {
invisible(file.remove(‘./summarySCC_PM25.rds’,
‘Source_Classification_Code.rds’))
}
# Create the png
png(‘./plot2.png’, width = 500, height = 450,
res = 55, type = ‘cairo’) # default is 480px X 480px
# subset data
NEI_Baltimore <- subset(NEI, fips == “24510”)
# Make Plot
with(aggregate(Emissions ~ year, NEI_Baltimore, sum),
plot(Emissions~year, pch = 18,
xlab = ”, ylab = ‘Total PM2.5 Emissions (tons)’,
main = ‘Total PM2.5 Emissions by Year in Baltimore City’,
col = “blue”, type = “b”, xlim = c(1999, 2008),
lty = 2, lwd = 1.5, lab = c(10, 5, 7)))
# Close png file
dev.off()

3.

plot3

PROMPT

Copy and paste the R code file for the plot uploaded in the previous question.

# libraries
require(utils)
require(cairoDevice) # anti-aliasing figure
# download, load data and subset
fileUrl <-
‘https://d396qusza40orc.cloudfront.net/exdata%2Fdata
%2FNEI_data.zip’
download.file(fileUrl,
destfile = ‘./Data.zip’,
method = ‘curl’, quiet = T)
if(file.exists(‘./Data.zip’)) {
# Extract data file
unzip(‘./Data.zip’)
# Delete original Zip file if it exists
invisible(file.remove(‘./Data.zip’))
}
## This first line will likely take a few seconds. Be
patient!
NEI <- readRDS(“summarySCC_PM25.rds”)
SCC <- readRDS(“Source_Classification_Code.rds”)
# Delete data files .rds
if(all(file.exists(‘./summarySCC_PM25.rds’,
‘Source_Classification_Code.rds’))) {
invisible(file.remove(‘./summarySCC_PM25.rds’,
‘Source_Classification_Code.rds’))
}
# Create the png
png(‘./plot3.png’, width = 700, height = 370,
res = 75, type = ‘cairo’) # default is 480px X 480px
# subset data
NEI_Baltimore <- subset(NEI, fips == “24510”)
# Make Plot
NEI_Baltimore %>%
group_by(year, type) %>%
summarise(sum = sum(Emissions)) %>%
ggplot(aes(year, sum)) +
geom_point() + geom_line() +
facet_wrap(~type, ncol = 4) +
labs(title = ‘Total PM2.5 Emission by Year in Baltimore
City’,
subtitle = ‘Subsetted by Type of Source’) +
xlab(”) + ylab(‘Total PM2.5 Emission (tons)’) +
scale_x_continuous(breaks =
unique(NEI_Baltimore$year)) +
theme_bw()
# Close png file
dev.off()

4.

plot4

PROMPT

Copy and paste the R code file for the plot uploaded in the previous question.

# libraries
require(utils)
require(cairoDevice) # anti-aliasing figure
# download, load data and subset
fileUrl <-
‘https://d396qusza40orc.cloudfront.net/exdata%2Fdata
%2FNEI_data.zip’
download.file(fileUrl,
destfile = ‘./Data.zip’,
method = ‘curl’, quiet = T)
if(file.exists(‘./Data.zip’)) {
# Extract data file
unzip(‘./Data.zip’)
# Delete original Zip file if it exists
invisible(file.remove(‘./Data.zip’))
}
## This first line will likely take a few seconds. Be
patient!
NEI <- readRDS(“summarySCC_PM25.rds”)
SCC <- readRDS(“Source_Classification_Code.rds”)
# Delete data files .rds
if(all(file.exists(‘./summarySCC_PM25.rds’,
‘Source_Classification_Code.rds’))) {
invisible(file.remove(‘./summarySCC_PM25.rds’,
‘Source_Classification_Code.rds’))) {
invisible(file.remove(‘./summarySCC_PM25.rds’,
‘Source_Classification_Code.rds’))
}
# Create the png
png(‘./plot4.png’, width = 700, height = 370,
res = 75, type = ‘cairo’) # default is 480px X 480px
# merge data and make Plot
NEI %>%
inner_join(SCC, by = ‘SCC’) %>%
dplyr::filter(str_detect(Short.Name, ‘[Cc]oal’)) %>%
group_by(year, type) %>%
summarise(sum = sum(Emissions)) %>%
ggplot(aes(year, sum)) +
geom_point() + geom_line() +
facet_wrap(~type, ncol = 4) +
labs(title = ‘Total PM2.5 Coal Emission by Year’,
subtitle = ‘Subsetted by Type of Source’) +
xlab(”) + ylab(‘Total PM2.5 Emission (tons)’) +
scale_x_continuous(breaks = unique(NEI$year)) +
theme_bw()
# Close png file
dev.off()

5.

plot5

PROMPT
Copy and paste the R code file for the plot uploaded in the previous question.

# libraries
require(utils)
require(cairoDevice) # anti-aliasing figure
# download, load data and subset
fileUrl <-
‘https://d396qusza40orc.cloudfront.net/exdata%2Fdata
%2FNEI_data.zip’
download.file(fileUrl,
destfile = ‘./Data.zip’,
method = ‘curl’, quiet = T)
if(file.exists(‘./Data.zip’)) {
# Extract data file
unzip(‘./Data.zip’)
# Delete original Zip file if it exists
invisible(file.remove(‘./Data.zip’))
}
## This first line will likely take a few seconds. Be
patient!
NEI <- readRDS(“summarySCC_PM25.rds”)
SCC <- readRDS(“Source_Classification_Code.rds”)
# Delete data files .rds
if(all(file.exists(‘./summarySCC_PM25.rds’,
‘Source_Classification_Code.rds’))) {
invisible(file.remove(‘./summarySCC_PM25.rds’,
‘Source_Classification_Code.rds’))
}
# Create the png
png(‘./plot5.png’, width = 700, height = 370,
res = 75, type = ‘cairo’) # default is 480px X 480px
# Make Plot
NEI %>%
dplyr::filter(fips == ‘24510’,
type == ‘ON-ROAD’) %>%
group_by(year) %>%
summarise(sum = sum(Emissions)) %>%
ggplot(aes(year, sum)) +
geom_point() + geom_line() +
labs(title = ‘Total PM2.5 Emission by Year in Baltimore
City’,
subtitle = ‘Subsetted from Motor Vehicle Sources (“On-
Road type”)’) +
xlab(”) + ylab(‘Total PM2.5 Emission (tons)’) +
scale_x_continuous(breaks = unique(NEI$year)) +
theme_bw()
# Close png file
dev.off()

6.

plot6

PROMPT
Copy and paste the R code file for the plot uploaded in the previous question.

# libraries
require(utils)
require(cairoDevice) # anti-aliasing figure
# download, load data and subset
fileUrl <-
‘https://d396qusza40orc.cloudfront.net/exdata%2Fdata
%2FNEI_data.zip’
download.file(fileUrl,
destfile = ‘./Data.zip’,
method = ‘curl’, quiet = T)
if(file.exists(‘./Data.zip’)) {
# Extract data file
unzip(‘./Data.zip’)
# Delete original Zip file if it exists
invisible(file.remove(‘./Data.zip’))
}
## This first line will likely take a few seconds. Be
patient!
NEI <- readRDS(“summarySCC_PM25.rds”)
SCC <- readRDS(“Source_Classification_Code.rds”)
# Delete data files .rds
if(all(file.exists(‘./summarySCC_PM25.rds’,
‘Source_Classification_Code.rds’))) {
invisible(file.remove(‘./summarySCC PM25.rds’
‘Source_Classification_Code.rds’))
}
# Create the png
png(‘./plot6.png’, width = 700, height = 370,
res = 75, type = ‘cairo’) # default is 480px X 480px
# Make Plot
NEI %>%
dplyr::filter(fips %in% c(“24510”, “06037”),
type == ‘ON-ROAD’) %>%
group_by(year, fips) %>%
summarise(sum = sum(Emissions)) %>%
ggplot(aes(year, sum, col = fips)) +
geom_point() + geom_line() +
labs(title = ‘Total PM2.5 Emission by Year in Baltimore
and Los Angeles’,
subtitle = ‘Subsetted from Motor Vehicle Sources (“On-
Road type”)’) +
xlab(”) + ylab(‘Total PM2.5 Emission (tons)’) +
scale_colour_discrete(name = “City”, labels = c(“Los
Angeles”, “Baltimore”)) +
theme(legend.title = element_text(face = “bold”)) +
scale_x_continuous(breaks = unique(NEI$year)) +
theme_bw()
# Close png file
dev.off()

Conclusion

Hopefully, this article will be useful for you to find all the Week, final assessment and Peer Graded Assessment Answers of Exploratory Data Analysis of Coursera and grab some premium knowledge with less effort. If this article really helped you in any way then make sure to share it with your friends on social media and let them also know about this amazing training. You can also check out our other course Answers. So, be with us guys we will share a lot more free courses and their exam/quiz solutions also and follow our Techno-RJ Blog for more updates.

93 thoughts on “Exploratory Data Analysis Coursera Quiz Answer [Updated Answers‼️] 2022”

  1. Pingback: 2eruption
  2. จบปัญหาสำหรับนักเล่นการพนันอยากเล่นเว็บตรงแต่ว่าไม่มีบัญชีธนาคาร วันนี้ทาง สล็อตwallet ได้เปิดโอกาสทางฝากเบิกเงินผ่านบัญชีทรูมันนี่วอเลท ที่เพียงแค่มีกระเป๋าเงินอิเล็กทรอนิกส์ก็ทำรายการฝากถอนไม่มีอย่างน้อยได้
    สล็อตวอเลท ไม่มีขั้นต่ํา ของพวกเรานั้นมีความปลอดภัยสูง
    ประเมินผลด้วยระบบ
    Ai ทำให้แนวทางการทำธุรกรรมกับ สล็อตเว็บตรง ฝากถอน true wallet ไม่มีธนาคาร ไม่มีขั้นต่ํา
    นั้นไม่มีความจำเป็นที่จะต้องส่งสลิปให้เจ้าหน้าที่ ใช้เวลาสำหรับเพื่อการฝากถอนไม่นานแค่เพียง 15 วินาทีเพียงแค่นั้น ซึ่งจะเกิดความบกพร่องน้อยมากๆและถ้าปัญหาเกี่ยวกับทางเรามีประวัติให้สมาชิกได้มองหมด ซื่อสัตย์สุจริตมั่นคงต่อสมาชิกแน่ๆ สมาชิกทุกท่านสามารถใช้บริการ สล็อต
    วอลเล็ต ไม่มีขั้นต่ํา ได้ตลอด 1 วัน ไม่มีการจำกัดปริมาณการฝากเบิกเงิน ทำรายการได้ตลอดทั้งวันทั้งคืนโดยไม่ต้องกลัวธนาคารปิดเปลี่ยนแปลง ซึ่งสล็อตออโต้วอเลท นั้นได้รับความนิยมเป็นอันมากในปี 2023 เนื่องมาจากมีระบบการฝากถอนที่ง่าย เร็วทันใจ ไม่ต้องมีบัญชีธนาคาร ไม่มีความยุ่งยากที่ต้องไปถึงธนาคารแล้วก็ทำรายการโอนเงิน ซึ่งหนทาง สล็อตเว็บตรงฝากถอน true wallet ไม่มีขั้นต่ำ นั้นมีความปลอดภัยสูง เชื่อถือได้ 100% สำหรับนักพนันสนใจเล่นกับ สล็อตเว็บตรงฝากถอน true wallet ไม่มีขั้นต่ํา
    สามารถสมัครเป็นสมาชิกวันนีัรับโบนัส 100%
    ได้ทันที เรามีSLOT เว็บตรงให้สมาชิกได้เลือกเล่นมากกว่า 1,000 เกมส์ เช่นค่ายดังๆที่ดินพวกเราให้บริการคือ
    สล็อต PG, สล็อตXO, สล็อตjoker, ซุปเปอร์สล็อต,SLOT
    AMBBET และก็ค่ายฯลฯ สามารถเลือกเล่นได้ตามที่ต้องการ ไม่มีน่ารำคาญเล่นเกมเดิมๆอย่างแน่นอน ทางสล็อตเว็บตรง ฝากถอน true wallet ไม่มีธนาคาร ไม่มีขั้นต่ํานั้นได้คัดสรรค์ เกมสล็อตแตกหนัก รางวัลหนัก ไว้ให้สมาชิกได้เล่นมากไม่น้อยเลยทีเดียว รับรองจากนักเล่นการพนันออนไลน์ที่ได้เข้ามาเล่นกับพวกเราแล้วว่า เล่นได้เงินจริงอย่างแน่นอน เล่นเว็บสล็อตเว็บตรงกับทาง SLOTPLAY138 ได้ไม่ยากแค่เพียง 3 ขั้นตอนเท่านั้นเป็น1.สมัครสมาชิกระบบออโต้ 2.ฝากถอนออโต้ ด้วยบัญชีทรูวอเลท
    3.เล่นได้ผ่านหน้าเว็บไซต์ ไม่ต้องดาวน์โหลดAppication และก็เนื่องจากว่าเราเป็นเว็บที่เปิดใหม่ทางพวกเราก็เลยมีการแจกเครดิตฟรีกับโปรโมชั่นมากมาย สมาชิกรับได้ทุกคนทางเรามีโปรโมชั่นที่ได้รับความนิยมอย่าง สล็อตฝาก 10
    รับ 100 วอเลท, สล็อตฝาก
    15 รับ 100 วอเลท, สล็อตฝาก
    20 รับ 100 วอเลท พิเศษสุดๆไปเลยแค่เพียงฝากเงินเข้ามาหลักหน่วยก็รับไปเลยเงินลงทุนเอาไว้ไปปั่นสล็อตออนไลน์ถึงหลักร้อย

    Also vissit my web blog: slot wallets

    Reply
  3. ในยุคนี้ เชื่อว่าคนไทยนั้นจะต้องเผชิญปัญหาตกงานหรือมีปัญหาเรื่องที่เกี่ยวข้องกับการเงินอย่างแน่แท้ เนื่องจากไม่ว่าจะเป็นเศรษฐกิจที่ตกต่ำ
    ไม่สามารถปฏิบัติงานหาเงิน วันนี้ทางเว็บเกมสล็อตมีวิธีการหาเงินง่ายๆกับการเล่นslotที่เป็นเกมออนไลน์หารายได้ได้จริง สามารถหารายได้ออนไลน์ได้ทุกแห่งทั้งวัน 24 ชั่วโมง ซึ่ง g2gbk8 เป็นเว็บเกมสล็อตมีมั่นคงถูกกฎหมายคาสิโนสากล รับประกันจากผู้เล่นจริงทั่วทั้งประเทศ ทุกคนสามารถหาเงินง่ายๆ โดยทาง g2gbk8 นั้นมีค่ายเกมjoker
    slot เว็บตรง,เว็บ pg ตรง,เว็บตรง slotxo,ซุปเปอร์สล็อต แค่เพียงสมัครเว็บตรงสล็อตกับทาง g2gbk8
    ที่เป็นเว็บตรงสล็อต ซึ่งไม่ผ่านผู้แทนหรือตัวกลางอะไรก็ตามเล่นslotได้โดยตรงกับค่ายเกม มีเกมสล็อตออนไลน์ให้เลือกเล่นมากกว่า
    500 เกม แล้วก็ยังมีบริการต่างๆล้นหลามที่จะเพิ่มความสบายสบายให้กับสมาชิกสล็อตเว็บตรงไม่ผ่านเอเย่นต์ ไม่ว่าจะเป็นการเติม-ถอน
    ไม่มีขั้นต่ำแล้วก็มีความรวดเร็วประมวลผลด้วยระบบai มีความเที่ยงตรงสูง ไม่จำเป็นต้องส่งหลักฐานการโอนให้กับทางผู้ดูแลให้เสียเวล่ำเวลา หรือจะเป็นโปรโมชั่นแจกเครดิตฟรี100% หรือจะเป็นโปรฝาก 99 รับ 300 เพื่อนๆสามารถหาเงินออนไลน์ได้แล้วที่slot เว็บตรง G2GBK8

    Reply
  4. Easily, the post is really the greatest on this laudable topic. I concur with your conclusions and will thirstily look forward to your future updates. Saying thank will not just be sufficient, for the wonderful c lucidity in your writing. I will instantly grab your rss feed to stay privy of any updates. Solid work and much success in your business enterprise!

    Reply
  5. Hello there I am so delighted I found your weblog, I really found you by mistake, while I was searching on Google for something else, Anyhow I am here now and would just like to say cheers for a remarkable post and a all round exciting blog (I also love the theme/design), I don’t have time to browse it all at the moment but I have book-marked it and also included your RSS feeds, so when I have time I will be back to read a lot more, Please do keep up the superb work.

    Reply
  6. It’s appropriate time to make a few plans for the long run and it is time to be happy. I’ve read this publish and if I may I wish to counsel you few attention-grabbing things or advice. Perhaps you could write next articles referring to this article. I want to read more things about it!

    Reply
  7. Thanks for some other wonderful post. The place else may anyone get that kind of information in such a perfect way of writing? I have a presentation subsequent week, and I am at the search for such information.

    Reply
  8. I found your blog website on google and verify just a few of your early posts. Proceed to keep up the very good operate. I just extra up your RSS feed to my MSN Information Reader. Looking for ahead to reading more from you in a while!…

    Reply
  9. I have been exploring for a bit for any high-quality articles or blog posts in this kind of space . Exploring in Yahoo I finally stumbled upon this web site. Reading this information So i¦m glad to convey that I have an incredibly just right uncanny feeling I discovered just what I needed. I most for sure will make certain to don¦t forget this web site and give it a glance on a continuing basis.

    Reply
  10. While this issue can vexed most people, my thought is that there has to be a middle or common ground that we all can find. I do value that you’ve added pertinent and sound commentary here though. Thank you!

    Reply
  11. I’ve been surfing online more than 3 hours today, yet I never found any interesting article like yours. It’s pretty worth enough for me. In my view, if all web owners and bloggers made good content as you did, the net will be much more useful than ever before.

    Reply
  12. Nevertheless, it’s all carried out with tongues rooted solidly in cheeks, and everybody has got nothing but absolutely love for their friendly neighborhood scapegoat. In reality, he is not merely a pushover. He is simply that extraordinary breed of person solid enough to take all that good natured ribbing for what it really is.

    Reply
  13. Appreciation for taking the time to discuss this topic, I would love to discover more on this topic. If viable, as you gain expertise, would you object to updating the website with further information? It is tremendously beneficial for me.

    Reply
  14. I have been a customer of 365PowerSupply.com for several years now, and I can confidently say that they are the best power supply trading and wholesale provider in the industry. Their focus on providing replacement power supplies for popular brands such as Dell, HP, Lenovo/IBM, and server workstation components is unmatched. They offer a wide selection of products, competitive pricing, and exceptional customer service. I highly recommend 365PowerSupply.com to anyone in need of power supply solutions.

    Reply
  15. Its like you read my mind! You seem to know a lot about this, like you wrote the book in it or something. I think that you can do with some pics to drive the message home a bit, but other than that, this is wonderful blog. A great read. I’ll certainly be back.

    Reply

Leave a Comment

Ads Blocker Image Powered by Code Help Pro

Ads Blocker Detected!!!

We have detected that you are using extensions to block ads. Please support us by disabling these ads blocker🙏.

Powered By
Best Wordpress Adblock Detecting Plugin | CHP Adblock