Calculus: Single Variable Part 1 – Functions Coursera Quiz Answers 2022 | All Weeks Assessment Answers [๐Ÿ’ฏCorrect Answer]

Hello Peers, Today we are going to share all week’s assessment and quizzes answers of the Calculus: Single Variable Part 1 – Functions course launched by Coursera totally free of costโœ…โœ…โœ…. This is a certification course for every interested student.

In case you didn’t find this course for free, then you can apply for financial ads to get this course for totally free.

Check out this article “How to Apply for Financial Ads?”

About The Coursera

Coursera, India’s biggest learning platform launched millions of free courses for students daily. These courses are from various recognized universities, where industry experts and professors teach in a very well manner and in a more understandable way.


Here, you will find Calculus: Single Variable Part 1 – Functions Exam Answers in Bold Color which are given below.

These answers are updated recently and are 100% correctโœ… answers of all week, assessment, and final exam answers of Calculus: Single Variable Part 1 – Functions from Coursera Free Certification Course.

Use โ€œCtrl+Fโ€ To Find Any Questions Answer. & For Mobile User, You Just Need To Click On Three dots In Your Browser & You Will Get A โ€œFindโ€ Option There. Use These Option to Get Any Random Questions Answer.

About Calculus: Single Variable Part 1 – Functions Course

Among the greatest intellectual accomplishments, calculus explains the motion of the planets, the scale at which a city should be built, and even the rhythm of a person’s heartbeat. This is a concise introduction to Calculus, with a focus on intellectual comprehension and practical applications.

Students just starting out in the sciences (whether engineering, physics, or sociology) will benefit greatly from this course. The course’s distinctive qualities include its

1) early introduction and use of Taylor series and approximations;
2) new synthesis of discrete and continuous versions of Calculus;
3) focus on concepts rather than computations; and
4) clear, dynamic, cohesive approach.

This first installment of a five-part series will deepen your familiarity with the Taylor series, review fundamental concepts in limit theory, explain the intuition behind l’Hopital’s rule, and introduce you to a brand-new notation for describing the exponential and logarithmic decay of functions: the BIG O.

SKILLS YOU WILL GAIN

  • Series Expansions
  • Calculus
  • Series Expansion

Course Apply Link – Calculus: Single Variable Part 1 – Functions

Calculus: Single Variable Part 1 – Functions Quiz Answers

Week 1 Quiz Answers

Quiz 1: Diagnostic Exam Quiz Answers

Q1. This is a diagnostic exam, to help you determine whether or not you have the prerequisites for the course, from algebra, geometry, pre-calculus, and basic calculus. Please solve the problems below. You mayย notย use any calculators, books, or internet resources. Use paper and pencil/pen to determine your answer, then choose one item from the list of available responses. Do not collaborate with others, please.

What is the derivative of x^4-2x^3+3x^2-5x+11x4โˆ’2x3+3x2โˆ’5x+11?

  • \displaystyle \frac{x^5}{5} โ€“ \frac{x^4}{2} + x^3 โ€“ \frac{5x^2}{2} + 11x + C5x5โ€‹โˆ’2x4โ€‹+x3โˆ’25x2โ€‹+11x+C, where CC is a constant.
  • 4x^3-6x^2-6x-5 4x3โˆ’6x2โˆ’6xโˆ’5
  • \displaystyle \frac{x^5}{5} โ€“ \frac{x^4}{2} + x^3 โ€“ \frac{5x^2}{2} + 11ร—5x5โ€‹โˆ’2x4โ€‹+x3โˆ’25x2โ€‹+11x
  • 4x^3-6x^2+6x-54x3โˆ’6x2+6xโˆ’5
  • 4x^4-6x^3+6x^2-5x+114x4โˆ’6x3+6x2โˆ’5x+11
  • x^3 -2x^2+3x+6x3โˆ’2x2+3x+6
  • None of these.
  • x^3-2x^2+3x-5x3โˆ’2x2+3xโˆ’5

Q2. Which of the following gives the equation of a circle of radius 22 and center at the point (-1,2)(โˆ’1,2)?

  • x^2 + y^2 = 4x2+y2=4
  • (x-1)^2 + (y+2)^2 = 4(xโˆ’1)2+(y+2)2=4
  • (x+1)^2 + (y-2)^2 = 4(x+1)2+(yโˆ’2)2=4
  • (x+1)^2 + (y-2)^2 = 2(x+1)2+(yโˆ’2)2=2
  • (x-1)^2 + (y+2)^2 = 2(xโˆ’1)2+(y+2)2=2
  • \displaystyle x^2 + \frac{y^2}{2} = 4x2+2y2โ€‹=4
  • (x+1)^2 โ€“ (y-2)^2 = 2(x+1)2โˆ’(yโˆ’2)2=2

Q3. implify \displaystyle \left(\frac{-125}{8}\right)^{2/3}(8โˆ’125โ€‹)2/3.

  • \displaystyle -\frac{5}{2}โˆ’25โ€‹
  • \displaystyle -\frac{2}{5}โˆ’52โ€‹
  • \displaystyle \frac{3}{5}53โ€‹
  • \displaystyle \frac{25}{4}425โ€‹
  • \displaystyle \frac{4}{25}254โ€‹
  • \displaystyle \frac{15625}{64}6415625โ€‹
  • \displaystyle \frac{2}{5}52โ€‹

Q4. Solve e^{2-3x}=125e2โˆ’3x=125 for xx.

  • \displaystyle \frac{3}{2} + \ln 12523โ€‹+ln125
  • \displaystyle \frac{3}{2} โ€“ \ln 12523โ€‹โˆ’ln125
  • \displaystyle \frac{2}{3} โ€“ \ln 12532โ€‹โˆ’ln125
  • \displaystyle \frac{3}{2} โ€“ \ln 523โ€‹โˆ’ln5
  • \displaystyle \frac{3}{2} + \ln 2523โ€‹+ln25
  • \displaystyle \frac{2}{3} โ€“ \ln 532โ€‹โˆ’ln5
  • \displaystyle \frac{2}{3} + \ln 2532โ€‹+ln25
  • \displaystyle \frac{2}{3} + \ln 12532โ€‹+ln125

Q5. Evaluate \displaystyle \int_1^3 \frac{dx}{x^2}โˆซ13โ€‹x2dxโ€‹.

  • \displaystyle -\frac{2}{3}โˆ’32โ€‹
  • \displaystyle -\frac{26}{27}โˆ’2726โ€‹
  • \displaystyle \frac{1}{3}31โ€‹
  • \displaystyle -\frac{1}{3}โˆ’31โ€‹
  • \displaystyle -\frac{1}{2}โˆ’21โ€‹
  • \displaystyle \frac{1}{2}21โ€‹
  • \displaystyle \frac{2}{3}32โ€‹
  • \displaystyle -\frac{8}{9}โˆ’98โ€‹

Q6. Let f(x) = x+\sin 2xf(x)=x+sin2x. Find the derivative f'(0)fโ€ฒ(0).

  • 33
  • -2โˆ’2
  • -3โˆ’3
  • -1โˆ’1
  • 00
  • 11
  • 22
  • 66
  • Q7. Evaluate \displaystyle \cos\frac{2\pi}{3} โ€“ \arctan 1cos32ฯ€โ€‹โˆ’arctan1. Be careful and look at all the options.
  • \displaystyle \frac{\pi+2}{4}4ฯ€+2โ€‹
  • \displaystyle \frac{\sqrt{3}-1}{2}23โ€‹โˆ’1โ€‹
  • \displaystyle \frac{\pi-2}{4}4ฯ€โˆ’2โ€‹
  • \displaystyle \frac{1-\pi}{2}21โˆ’ฯ€โ€‹
  • \displaystyle \frac{1-\sqrt{3}}{2}21โˆ’3โ€‹โ€‹
  • \displaystyle -\frac{\sqrt{3}+1}{2}โˆ’23โ€‹+1โ€‹
  • \displaystyle -\frac{\sqrt{3}+2}{4}โˆ’43โ€‹+2โ€‹
  • \displaystyle -\frac{\pi+2}{4}โˆ’4ฯ€+2โ€‹

Q8. Evaluate \displaystyle \lim_{x\to 1}\frac{2x^2+x-3}{x^2-x}xโ†’1limโ€‹x2โˆ’x2x2+xโˆ’3โ€‹.

  • 55
  • \displaystyle \frac{7}{2} 27โ€‹
  • \displaystyle \frac{4x+1}{2x-1} 2xโˆ’14x+1โ€‹
  • \displaystyle \frac{0}{0} 00โ€‹
  • 22
  • -3โˆ’3
  • 00
  • \displaystyle \frac{5}{2} 25โ€‹

Week 2 Quiz Answers

Quiz 1: Core Homework: Functions Quiz Answers

Q1. Which of the following intervals are contained in the domain of the function \sqrt{2x โ€“ x^3}2xโˆ’x3โ€‹ ? Select all that applyโ€ฆ

  • [\sqrt{2}, +\infty)[2โ€‹,+โˆž)
  • (-\infty, -\sqrt{2}](โˆ’โˆž,โˆ’2โ€‹]
  • [-\sqrt{2}, 0][โˆ’2โ€‹,0]
  • [0, \sqrt{2}][0,2โ€‹]

Q2. Which of the following intervals are contained in the domain of the function \displaystyle \frac{x-3}{x^2-4}\ln xx2โˆ’4xโˆ’3โ€‹lnx ? Select all that applyโ€ฆ

  • (0,2)(0,2)
  • (-\infty, -2)(โˆ’โˆž,โˆ’2)
  • (2, +\infty)(2,+โˆž)
  • (-2, 0)(โˆ’2,0)

Q3. What is the domain of the function \displaystyle \arcsin\frac{x-2}{3}arcsin3xโˆ’2โ€‹ ?

  • [-1, 5][โˆ’1,5]
  • \displaystyle \left[ \frac{2}{3}, \frac{5}{3} \right][32โ€‹,35โ€‹]
  • \mathbb{R} = (-\infty, +\infty)R=(โˆ’โˆž,+โˆž)
  • [-2, 3][โˆ’2,3]
  • [2 โ€“ 3\pi, 2 + 3\pi][2โˆ’3ฯ€,2+3ฯ€]
  • [-2, 2][โˆ’2,2]

Q4. What is the range of the function -x^2+1โˆ’x2+1 ?

  • [0, +\infty)[0,+โˆž)
  • (-\infty, 0](โˆ’โˆž,0]
  • \mathbb{R} = (-\infty, +\infty)R=(โˆ’โˆž,+โˆž)
  • [0,1][0,1].
  • (-\infty, 1](โˆ’โˆž,1].
  • [1, +\infty)[1,+โˆž).

Q5. What is the range of the function \ln(1+x^2)ln(1+x2) ?

  • \mathbb{R} = (-\infty, +\infty)R=(โˆ’โˆž,+โˆž)
  • (-\infty, 0](โˆ’โˆž,0]
  • [0, +\infty)[0,+โˆž)
  • [1, +\infty)[1,+โˆž)
  • (-\infty, 1](โˆ’โˆž,1]
  • [-1, +\infty)[โˆ’1,+โˆž)

Q6. What is the range of the function \arctan \cos xarctancosx (i.e. the inverse of the tangent function with the parameter \cos xcosx)?

  • [-\pi, \pi][โˆ’ฯ€,ฯ€]
  • \displaystyle \left[ -\frac{\pi}{4}, \frac{\pi}{4} \right][โˆ’4ฯ€โ€‹,4ฯ€โ€‹]
  • \displaystyle \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right][โˆ’2ฯ€โ€‹,2ฯ€โ€‹]
  • (-\infty, 0](โˆ’โˆž,0]
  • [0, +\infty)[0,+โˆž)
  • \mathbb{R} = (-\infty, +\infty)R=(โˆ’โˆž,+โˆž)

Q7. If f(x) = 4x^3+1f(x)=4x3+1 and g(x) = \sqrt{x+3}g(x)=x+3โ€‹, compute (f \circ g)(x)(fโˆ˜g)(x) and (g \circ f)(x)(gโˆ˜f)(x).

  • (f \circ g)(x) = 2\sqrt{x^3+1}(fโˆ˜g)(x)=2x3+1โ€‹ and (g \circ f)(x) = 4(x+3)^{3/2} + 1(gโˆ˜f)(x)=4(x+3)3/2+1
  • (f \circ g)(x) = (g \circ f)(x) = (4x^3+1)\sqrt{x+3}(fโˆ˜g)(x)=(gโˆ˜f)(x)=(4x3+1)x+3โ€‹
  • (f \circ g)(x) = (g \circ f)(x) = 4x^3+1 + \sqrt{x+3}(fโˆ˜g)(x)=(gโˆ˜f)(x)=4x3+1+x+3โ€‹
  • (f \circ g)(x) = 4(x+3)^{3/2} + 1(fโˆ˜g)(x)=4(x+3)3/2+1 and (g \circ f)(x) = 2\sqrt{x^3+1}(gโˆ˜f)(x)=2x3+1โ€‹

Q8. What is the inverse of the function f(x) = e^{2x}f(x)=e2x ? Choose all that are correct.

  • f^{-1}(x) = \ln x^2fโˆ’1(x)=lnx2
  • f^{-1}(x) = \ln \sqrt{x}fโˆ’1(x)=lnxโ€‹
  • \displaystyle f^{-1}(x) = \frac{1}{e^{2x}}fโˆ’1(x)=e2x1โ€‹
  • \displaystyle f^{-1}(x) = \frac{1}{2}\ln xfโˆ’1(x)=21โ€‹lnx.
  • f^{-1}(x) = \log_{2} xfโˆ’1(x)=log2โ€‹x.
  • The exponential functions is its own inverse, so f^{-1}(x) = e^{2x}fโˆ’1(x)=e2x

Quiz 2: Challenge Homework: Functions Quiz Answers

Q1. What is the domain of the function \displaystyle \ln\sin xlnsinx

  • The union of all intervals of the form \big( n\pi, (n+1)\pi \big)(nฯ€,(n+1)ฯ€) for nn an odd integer.
  • The union of all intervals of the form \big[ n\pi, (n+1)\pi \big][nฯ€,(n+1)ฯ€] for nn an even integer.
  • The union of all intervals of the form \big[ n\pi, (n+1)\pi \big][nฯ€,(n+1)ฯ€] for nn an odd integer.
  • The union of all intervals of the form \big( n\pi, (n+1)\pi \big)(nฯ€,(n+1)ฯ€) for nn an even integer.

Q2. Let \displaystyle f(x) = \frac{1}{x+2}f(x)=x+21โ€‹. Determine f \circ ffโˆ˜f.

  • \displaystyle (f \circ f)(x) = \frac{1}{(x+2)^2}(fโˆ˜f)(x)=(x+2)21โ€‹
  • \displaystyle (f \circ f)(x) = \frac{x+2}{2x+5}(fโˆ˜f)(x)=2x+5x+2โ€‹
  • \displaystyle (f \circ f)(x) = \frac{2x+5}{x+2}(fโˆ˜f)(x)=x+22x+5โ€‹
  • (f \circ f)(x) = x+2(fโˆ˜f)(x)=x+2
  • (f \circ f)(x) = 1(fโˆ˜f)(x)=1
  • \displaystyle (f \circ f)(x) = \frac{2}{x+2}(fโˆ˜f)(x)=x+22โ€‹

Q3. Which of the following is the inverse of the function f(x) = \sin x^2f(x)=sinx2 on some appropriate domain?

  • f^{-1}(x) = \arcsin \sqrt{x}fโˆ’1(x)=arcsinxโ€‹
  • f^{-1}(x) = \sqrt{\arcsin x}fโˆ’1(x)=arcsinxโ€‹
  • \displaystyle f^{-1}(x) = \frac{1}{2} \arcsin xfโˆ’1(x)=21โ€‹arcsinx
  • \displaystyle f^{-1}(x) = \arcsin\frac{x}{2}fโˆ’1(x)=arcsin2xโ€‹
  • f^{-1}(x) = \sqrt{\csc x}fโˆ’1(x)=cscxโ€‹
  • \displaystyle f^{-1}(x) = \frac{1}{\sin x^2}fโˆ’1(x)=sinx21โ€‹

Q4. Which of the following is the inverse of the function f(x) = \arctan \left( \ln 3x \right)f(x)=arctan(ln3x) on some appropriate domain?

  • \displaystyle f^{-1}(x) = \frac{1}{\arctan \left( \ln 3x \right)}fโˆ’1(x)=arctan(ln3x)1โ€‹
  • \displaystyle f^{-1}(x) = \frac{1}{3} e^{\tan x}fโˆ’1(x)=31โ€‹etanx
  • \displaystyle f^{-1}(x) = \frac{1}{3} \tan e^x fโˆ’1(x)=31โ€‹tanex
  • \displaystyle f^{-1}(x) = e^{(\tan x) / 3}fโˆ’1(x)=e(tanx)/3
  • \displaystyle f^{-1}(x) = \tan e^{x/3}fโˆ’1(x)=tanex/3
  • \displaystyle f^{-1}(x) = \tan \left( \frac{1}{3} e^x \right)fโˆ’1(x)=tan(31โ€‹ex)

Quiz 3: Core Homework: The Exponential Quiz Answers

Q1. Find all possible solutions to the equation e^{ix} = ieix=i.

  • \displaystyle x = \frac{\pi}{4}x=4ฯ€โ€‹
  • \displaystyle x = \frac{\pi}{2}x=2ฯ€โ€‹
  • x = n\pix=nฯ€ for all n \in \mathbb{Z}nโˆˆZ
  • \displaystyle x = \frac{n\pi}{2}x=2nฯ€โ€‹ for all n \in \mathbb{Z}nโˆˆZ
  • \displaystyle x = \frac{(4n + 1)\pi}{2}x=2(4n+1)ฯ€โ€‹ for all n \in \mathbb{Z}nโˆˆZ
  • \displaystyle x = \frac{(2n + 1)\pi}{2}x=2(2n+1)ฯ€โ€‹ for all n \in \mathbb{Z}nโˆˆZ

Q2. Calculate \displaystyle \sum_{k=0}^{\infty} (-1)^k \frac{(\ln\, 4)^k}{k!}k=0โˆ‘โˆžโ€‹(โˆ’1)kk!(ln4)kโ€‹.

  • \displaystyle \frac{1}{4}41โ€‹
  • e^{-4}eโˆ’4
  • \displaystyle -\frac{1}{4}โˆ’41โ€‹
  • e^4e4
  • -4โˆ’4
  • 44

Q3. Calculate \displaystyle \sum_{k=0}^\infty (-1)^k \frac{\pi^{2k}}{(2k)!}k=0โˆ‘โˆžโ€‹(โˆ’1)k(2k)!ฯ€2kโ€‹.

  • 00
  • 11
  • -1โˆ’1
  • \piฯ€
  • -\piโˆ’ฯ€
  • e^\pieฯ€

Q4. Write out the first four terms of the sum \displaystyle \sum_{k=1}^{\infty} \frac{(-1)^{k+1} 2^k}{2k-1}k=1โˆ‘โˆžโ€‹2kโˆ’1(โˆ’1)k+12kโ€‹.

  • \displaystyle 2 โ€“ \frac{4}{3} + \frac{8}{5} โ€“ \frac{16}{7} + \cdots2โˆ’34โ€‹+58โ€‹โˆ’716โ€‹+โ‹ฏ
  • \displaystyle -\frac{2}{3} + \frac{4}{5} โ€“ \frac{8}{7} + \frac{16}{9} + \cdotsโˆ’32โ€‹+54โ€‹โˆ’78โ€‹+916โ€‹+โ‹ฏ
  • \displaystyle \frac{2}{3} โ€“ \frac{4}{5} + \frac{8}{7} โ€“ \frac{16}{9} + \cdots32โ€‹โˆ’54โ€‹+78โ€‹โˆ’916โ€‹+โ‹ฏ
  • \displaystyle -1 + 2 โ€“ \frac{4}{3} + \frac{8}{5} + \cdotsโˆ’1+2โˆ’34โ€‹+58โ€‹+โ‹ฏ
  • \displaystyle 2 + \frac{4}{3} โ€“ \frac{8}{5} + \frac{16}{7} + \cdots2+34โ€‹โˆ’58โ€‹+716โ€‹+โ‹ฏ
  • \displaystyle -2 + \frac{4}{3} โ€“ \frac{8}{5} + \frac{16}{7} + \cdotsโˆ’2+34โ€‹โˆ’58โ€‹+716โ€‹+โ‹ฏ

Q5. Write out the first four terms of the sum \displaystyle \sum_{k=0}^{\infty} \frac{(-1)^k \pi^{2k}}{k!(2k+1)}k=0โˆ‘โˆžโ€‹k!(2k+1)(โˆ’1)kฯ€2kโ€‹.

  • \displaystyle \frac{\pi^2}{3} + \frac{\pi^4}{10} + \frac{\pi^6}{42} + \frac{\pi^8}{216}3ฯ€2โ€‹+10ฯ€4โ€‹+42ฯ€6โ€‹+216ฯ€8โ€‹
  • \displaystyle โ€“ \frac{\pi^2}{10} + \frac{\pi^4}{42} โ€“ \frac{\pi^6}{216} โ€“ \frac{\pi^8}{1320}โˆ’10ฯ€2โ€‹+42ฯ€4โ€‹โˆ’216ฯ€6โ€‹โˆ’1320ฯ€8โ€‹
  • \displaystyle โ€“ \frac{\pi^2}{3} + \frac{\pi^4}{10} โ€“ \frac{\pi^6}{42} + \frac{\pi^8}{216}โˆ’3ฯ€2โ€‹+10ฯ€4โ€‹โˆ’42ฯ€6โ€‹+216ฯ€8โ€‹
  • \displaystyle 1 โ€“ \frac{\pi^2}{3} + \frac{\pi^4}{10} โ€“ \frac{\pi^6}{42}1โˆ’3ฯ€2โ€‹+10ฯ€4โ€‹โˆ’42ฯ€6โ€‹
  • \displaystyle 1 โ€“ \frac{\pi^2}{10} + \frac{\pi^4}{42} โ€“ \frac{\pi^6}{216}1โˆ’10ฯ€2โ€‹+42ฯ€4โ€‹โˆ’216ฯ€6โ€‹
  • \displaystyle 1 + \frac{\pi^2}{3} + \frac{\pi^4}{10} + \frac{\pi^6}{42}1+3ฯ€2โ€‹+10ฯ€4โ€‹+42ฯ€6โ€‹

Q6. Which of the following expressions describes the sum \displaystyle \frac{e}{2} โ€“ \frac{e^2}{4} + \frac{e^3}{6} โ€“ \frac{e^4}{8} + \cdots2eโ€‹โˆ’4e2โ€‹+6e3โ€‹โˆ’8e4โ€‹+โ‹ฏ ?

  • \displaystyle \sum_{k=1}^\infty (-1)^k \frac{e^{k+1}}{2k + 2}k=1โˆ‘โˆžโ€‹(โˆ’1)k2k+2ek+1โ€‹
  • \displaystyle \sum_{k=0}^\infty (-1)^{k+1} \frac{e^k}{2k}k=0โˆ‘โˆžโ€‹(โˆ’1)k+12kekโ€‹
  • \displaystyle \sum_{k=0}^\infty (-1)^k \frac{e^{k+1}}{2k + 2}k=0โˆ‘โˆžโ€‹(โˆ’1)k2k+2ek+1โ€‹
  • \displaystyle \sum_{k=1}^\infty (-1)^{k+1} \frac{e^k}{2k}k=1โˆ‘โˆžโ€‹(โˆ’1)k+12kekโ€‹
  • \displaystyle \sum_{k=0}^\infty (-1)^{k+1} \frac{e^{k+1}}{2k + 2}k=0โˆ‘โˆžโ€‹(โˆ’1)k+12k+2ek+1โ€‹
  • \displaystyle \sum_{k=1}^\infty (-1)^k \frac{e^k}{2k}k=1โˆ‘โˆžโ€‹(โˆ’1)k2kekโ€‹

Q7. Which of the following expressions describes the sum \displaystyle -1 + \frac{x}{2\cdot 1} โ€“ \frac{x^2}{3 \cdot 2 \cdot 1} + \frac{x^3}{4 \cdot 3 \cdot 2 \cdot 1} + \cdotsโˆ’1+2โ‹…1xโ€‹โˆ’3โ‹…2โ‹…1x2โ€‹+4โ‹…3โ‹…2โ‹…1x3โ€‹+โ‹ฏ ?

  • \displaystyle \sum_{k=1}^\infty (-1)^k \frac{x^{k-1}}{k!}k=1โˆ‘โˆžโ€‹(โˆ’1)kk!xkโˆ’1โ€‹
  • \displaystyle \sum_{k=0}^\infty (-1)^k \frac{x^{k}}{k!}k=0โˆ‘โˆžโ€‹(โˆ’1)kk!xkโ€‹
  • \displaystyle \sum_{k=1}^\infty (-1)^{k+1} \frac{x^k}{(k+1)!}k=1โˆ‘โˆžโ€‹(โˆ’1)k+1(k+1)!xkโ€‹
  • \displaystyle \sum_{k=0}^\infty (-1)^{k+1} \frac{x^k}{(k+1)!}k=0โˆ‘โˆžโ€‹(โˆ’1)k+1(k+1)!xkโ€‹
  • \displaystyle \sum_{k=1}^\infty (-1)^{k-1} \frac{x^{k-1}}{(k+1)!}k=1โˆ‘โˆžโ€‹(โˆ’1)kโˆ’1(k+1)!xkโˆ’1โ€‹
  • \displaystyle \sum_{k=0}^\infty (-1)^k \frac{x^k}{(k+1)!}k=0โˆ‘โˆžโ€‹(โˆ’1)k(k+1)!xkโ€‹

Q8. Engineers and scientists sometimes use powers of 10 and logarithms in base 10. In mathematics, we tend to prefer exponentials with base ee and natural logarithms. We have seen in lecture one of the main reasons: the derivative of the exponential function e^xex is itself. For applications, it is important that we know how to translate between logarithms in base ee and those in base 10. In order to find such a formula, suppose

  • y = \ln x \quad \text{ and } \quad z = \log_{10} xy=lnx and z=log10โ€‹x
  • Eliminate xx between these two equations to find the relationship between yy and zz.
  • \displaystyle y = \frac{z}{\ln 10}y=ln10zโ€‹
  • y = z \ln 10y=zln10
  • \displaystyle z = \frac{y}{\log_{10} e}z=log10โ€‹eyโ€‹
  • z = y \log_{10} ez=ylog10โ€‹e

Quiz 4: Challenge Homework: The Exponential Quiz Answers

Q1. Using Eulerโ€™s formula, compute the product e^{ix} \cdot e^{iy}eixโ‹…eiy. What is the real part (that is, the term without a factor of ii)? Remember that i^2 = -1i2=โˆ’1.

  • \cos x \cos y โ€“ \sin x \sin ycosxcosyโˆ’sinxsiny
  • \cos x \cos y + \sin x \sin ycosxcosy+sinxsiny
  • \sin x \cos y โ€“ \cos x \sin ysinxcosyโˆ’cosxsiny
  • \sin x \cos y + \cos x \sin ysinxcosy+cosxsiny

Q2. Let nn be an integer. Using Eulerโ€™s formula we have

e^{inx} = \cos nx + i \sin nxeinx=cosnx+isinnx

On the other hand, we also have

e^{inx} = (e^{ix})^n = (\cos x + i\sin x)^neinx=(eix)n=(cosx+isinx)n

Putting both of these expressions together, we obtain de Moivreโ€™s formula:

\cos nx + i \sin nx = (\cos x + i \sin x)^ncosnx+isinnx=(cosx+isinx)n

Use the latter to find an expression for \sin 3xsin3x in terms of \sin xsinx and \cos xcosx.

Select all that applyโ€ฆ

  • \sin 3x = 4\cos^3 x โ€“ 3\cos xsin3x=4cos3xโˆ’3cosx
  • \sin 3x = 3\sin x โ€“ 4\sin^3 xsin3x=3sinxโˆ’4sin3x
  • \sin 3x = 3\sin x \cos^2 x โ€“ \sin^3 xsin3x=3sinxcos2xโˆ’sin3x
  • \sin 3x = \cos^3 x โ€“ 2\sin^2 x \cos xsin3x=cos3xโˆ’2sin2xcosx

Week 3 Quiz Answers

Quiz 1: Core Homework: Taylor Series Quiz Answers

Q1. Compute the Taylor series about x=0x=0 of the polynomial f(x) = x^4 + 4x^3 + x^2 + 3x + 6f(x)=x4+4x3+x2+3x+6. Be sure to fully simplify. What does this tell you about the Taylor series of a polynomial?

Hint: If you paid attention during the lecture, this will be a very simple problem!

  • The Taylor series of f(x)f(x) is 6 + 3x + x^2 + 4x^3 + x^46+3x+x2+4x3+x4: the Taylor series about x=0x=0 of a polynomial is the polynomial itself.
  • The Taylor series of f(x)f(x) is 6: the Taylor series about x=0x=0 of a polynomial is just the lowest order term.
  • The Taylor series of f(x)f(x) is 3 + 2x + 12x^2 + 4x^33+2x+12x2+4x3: the Taylor series about x=0x=0 of a polynomial is its derivative.
  • The Taylor series of f(x)f(x) is x^4x4: the Taylor series about x=0x=0 of a polynomial is just the highest order term.
  • A polynomial does not have a Taylor series.
  • The Taylor series of f(x)f(x) is \displaystyle 6x + \frac{3x^2}{2} + \frac{x^3}{3} + x^4 + \frac{x^5}{5} + C6x+23x2โ€‹+3x3โ€‹+x4+5x5โ€‹+C: the Taylor series about x=0x=0 of a polynomial is its integral.

Q2. Compute the first three terms of the Taylor series about x=0x=0 of \sqrt{1+x}1+xโ€‹.

  • \displaystyle \sqrt{1+x} = 1 + 2x โ€“ 2x^2 + \cdots1+xโ€‹=1+2xโˆ’2x2+โ‹ฏ
  • \displaystyle \sqrt{1+x} = 1 + \frac{1}{2}x โ€“ \frac{1}{4}x^2 + \cdots1+xโ€‹=1+21โ€‹xโˆ’41โ€‹x2+โ‹ฏ
  • \displaystyle \sqrt{1+x} = 1 + x โ€“ \frac{1}{4}x^2 + \cdots1+xโ€‹=1+xโˆ’41โ€‹x2+โ‹ฏ
  • \displaystyle \sqrt{1+x} = 1 + 2x โ€“ 4x^2 + \cdots1+xโ€‹=1+2xโˆ’4x2+โ‹ฏ
  • \displaystyle \sqrt{1+x} = 1 โ€“ \frac{1}{2}x + \frac{1}{8}x^2 + \cdots1+xโ€‹=1โˆ’21โ€‹x+81โ€‹x2+โ‹ฏ
  • \displaystyle \sqrt{1+x} = 1 + \frac{1}{2}x โ€“ \frac{1}{8}x^2 + \cdots1+xโ€‹=1+21โ€‹xโˆ’81โ€‹x2+โ‹ฏ

Q3. Find the first four non-zero terms of the Taylor series about x=0x=0 of the function (x+2)^{-1}(x+2)โˆ’1.

  • \displaystyle (x+2)^{-1} = \frac{1}{2} โ€“ \frac{1}{4}x + \frac{1}{8}x^2 โ€“ \frac{3}{16}x^3 + \cdots(x+2)โˆ’1=21โ€‹โˆ’41โ€‹x+81โ€‹x2โˆ’163โ€‹x3+โ‹ฏ
  • \displaystyle (x+2)^{-1} = \frac{1}{2} + \frac{1}{4}x + \frac{1}{8}x^2 + \frac{1}{16}x^3 + \cdots(x+2)โˆ’1=21โ€‹+41โ€‹x+81โ€‹x2+161โ€‹x3+โ‹ฏ
  • \displaystyle (x+2)^{-1} = \frac{1}{2} + \frac{1}{4}x + \frac{1}{8}x^2 + \frac{3}{16}x^3 + \cdots(x+2)โˆ’1=21โ€‹+41โ€‹x+81โ€‹x2+163โ€‹x3+โ‹ฏ
  • \displaystyle (x+2)^{-1} = \frac{1}{2} + \frac{1}{4}x + \frac{1}{4}x^2 + \frac{3}{16}x^3 + \cdots(x+2)โˆ’1=21โ€‹+41โ€‹x+41โ€‹x2+163โ€‹x3+โ‹ฏ
  • \displaystyle (x+2)^{-1} = \frac{1}{2} โ€“ \frac{1}{4}x + \frac{1}{8}x^2 โ€“ \frac{1}{16}x^3 + \cdots(x+2)โˆ’1=21โ€‹โˆ’41โ€‹x+81โ€‹x2โˆ’161โ€‹x3+โ‹ฏ
  • \displaystyle (x+2)^{-1} = \frac{1}{2} โ€“ \frac{1}{4}x + \frac{1}{4}x^2 โ€“ \frac{3}{16}x^3 + \cdots(x+2)โˆ’1=21โ€‹โˆ’41โ€‹x+41โ€‹x2โˆ’163โ€‹x3+โ‹ฏ

Q4. Compute the coefficient of the x^3x3 term in the Taylor series about x=0x=0 of the function e^{-2x}eโˆ’2x.

  • \displaystyle \frac{4}{3}34โ€‹
  • \displaystyle -\frac{1}{3}โˆ’31โ€‹
  • \displaystyle \frac{2}{3}32โ€‹
  • 22
  • \displaystyle -\frac{8}{3}โˆ’38โ€‹
  • \displaystyle -\frac{2}{3}โˆ’32โ€‹
  • \displaystyle -\frac{4}{3}โˆ’34โ€‹

Q5. Which of the following is the Taylor series about x=0x=0 of \displaystyle \frac{1}{1-x}1โˆ’x1โ€‹ ?

  • \displaystyle \frac{1}{1-x} = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots1โˆ’x1โ€‹=1+x+2!1โ€‹x2+3!1โ€‹x3+โ‹ฏ
  • \displaystyle \frac{1}{1-x} = 1 + x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \cdots 1โˆ’x1โ€‹=1+x+21โ€‹x2+31โ€‹x3+โ‹ฏ
  • \displaystyle \frac{1}{1-x} = 1 โ€“ x + x^2 โ€“ x^3 + \cdots 1โˆ’x1โ€‹=1โˆ’x+x2โˆ’x3+โ‹ฏ
  • \displaystyle \frac{1}{1-x} = 1 + 2x + 4x^2 + 8x^3 + \cdots1โˆ’x1โ€‹=1+2x+4x2+8x3+โ‹ฏ
  • \displaystyle \frac{1}{1-x} = x+x^2+x^3+\cdots1โˆ’x1โ€‹=x+x2+x3+โ‹ฏ
  • \displaystyle \frac{1}{1-x} = 1+x+x^2+x^3+\cdots1โˆ’x1โ€‹=1+x+x2+x3+โ‹ฏ
  • \displaystyle \frac{1}{1-x} = 1+x+2x^2 + 3x^3 + \cdots1โˆ’x1โ€‹=1+x+2x2+3x3+โ‹ฏ

Q6. What is the derivative of the Bessel function J_0(x)J0โ€‹(x) at x=0x=0? Remember that J_0(x)J0โ€‹(x) is defined through its Taylor series about x=0x=0:

J_0(x) = \displaystyle\sum_{k=0}^\infty (-1)^k \frac{x^{2k}}{2^{2k}(k!)^2}J0โ€‹(x)=k=0โˆ‘โˆžโ€‹(โˆ’1)k22k(k!)2x2kโ€‹

  • 11
  • \displaystyle -\frac{1}{2}โˆ’21โ€‹
  • 00
  • \displaystyle -\frac{1}{4}โˆ’41โ€‹
  • \displaystyle \frac{1}{2}21โ€‹
  • \displaystyle \frac{1}{4}41โ€‹

Quiz 2: Challenge Homework: Taylor Series Quiz Answers

Q1. The Taylor series about x=0x=0 of the arctangent function is

\arctan x = x โ€“ \frac{x^3}{3} + \frac{x^5}{5} โ€“ \frac{x^7}{7} + \cdots = \sum_{k=0}^\infty (-1)^k\frac{x^{2k+1}}{2k+1}arctanx=xโˆ’3x3โ€‹+5x5โ€‹โˆ’7x7โ€‹+โ‹ฏ=k=0โˆ‘โˆžโ€‹(โˆ’1)k2k+1x2k+1โ€‹

Given this, what is the 11th derivative of \arctan xarctanx at x=0x=0?

Hint: think in terms of the definition of a Taylor series. The coefficient of the degree 11 term of arctan is -1/11โˆ’1/11; thereforeโ€ฆ

  • -10โˆ’10
  • -23!โˆ’23!
  • -11โˆ’11
  • -10!โˆ’10!
  • -11!โˆ’11!
  • -23โˆ’23

Q2. Adding together an infinite number of terms can be a bit dangerous. But sometimes, itโ€™s intuitive. Compute, by drawing a picture if you like, the sum:

  • 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots1+21โ€‹+41โ€‹+81โ€‹+161โ€‹+โ€ฆ
  • 44
  • \piฯ€
  • ee
  • \inftyโˆž
  • 22
  • 11

Q3. Find the value of aa for which \displaystyle \sum_{n=0}^{\infty} e^{na}=2n=0โˆ‘โˆžโ€‹ena=2.

  • \displaystyle a=\ln \frac{3}{2}a=ln23โ€‹
  • \displaystyle a=2(1-e)a=2(1โˆ’e)
  • \displaystyle a=-\ln2a=โˆ’ln2
  • \displaystyle a=0a=0
  • \displaystyle a=\ln \frac{e+2}{e}a=lnee+2โ€‹
  • \displaystyle a=\ln \frac{2-e}{e}a=lne2โˆ’eโ€‹

Quiz 3: Core Homework: Computing Taylor Series Quiz Answers

Q1. Use a Taylor series to find a good quadratic approximation to e^{2x^2}e2x2 near x=0x=0. That means, use the terms in the Taylor series up to an including degree two.

  • e^{2x^2} \approx 1 + x + 2x^2e2x2โ‰ˆ1+x+2x2
  • e^{2x^2} \approx 1 + 2x^2e2x2โ‰ˆ1+2x2
  • e^{2x^2} \approx x + 2x^2e2x2โ‰ˆx+2x2
  • e^{2x^2} \approx 1 โ€“ x โ€“ 2x^2e2x2โ‰ˆ1โˆ’xโˆ’2x2
  • e^{2x^2} \approx 2x^2e2x2โ‰ˆ2x2
  • e^{2x^2} \approx 1 โ€“ 2x^2e2x2โ‰ˆ1โˆ’2x2

Q2. Determine the Taylor series of e^{u^2+u}eu2+u up to terms of degree four.

  • \displaystyle e^{u^2+u} = 1+u+\frac{3}{2}u^2+\frac{4}{3}u^3+\frac{5}{4}u^4 + \text{H.O.T.}eu2+u=1+u+23โ€‹u2+34โ€‹u3+45โ€‹u4+H.O.T.
  • \displaystyle e^{u^2+u} = 1-u-\frac{1}{2}u^2+\frac{2}{3}u^3+\frac{5}{4}u^4 + \text{H.O.T.}eu2+u=1โˆ’uโˆ’21โ€‹u2+32โ€‹u3+45โ€‹u4+H.O.T.
  • \displaystyle e^{u^2+u} = 1-u-\frac{1}{2}u^2+\frac{5}{6}u^3+\frac{25}{24}u^4 + \text{H.O.T.}eu2+u=1โˆ’uโˆ’21โ€‹u2+65โ€‹u3+2425โ€‹u4+H.O.T.
  • \displaystyle e^{u^2+u} = 1+u+\frac{3}{2}u^2+\frac{7}{6}u^3+\frac{25}{24}u^4 + \text{H.O.T.}eu2+u=1+u+23โ€‹u2+67โ€‹u3+2425โ€‹u4+H.O.T.
  • \displaystyle e^{u^2+u} = 1-u-\frac{1}{2}u^2+\frac{2}{3}u^3+\frac{25}{24}u^4 + \text{H.O.T.}eu2+u=1โˆ’uโˆ’21โ€‹u2+32โ€‹u3+2425โ€‹u4+H.O.T.
  • \displaystyle e^{u^2+u} = 1+u+\frac{3}{2}u^2+\frac{7}{6}u^3+\frac{5}{4}u^4 + \text{H.O.T.}eu2+u=1+u+23โ€‹u2+67โ€‹u3+45โ€‹u4+H.O.T.

Q3. Compute the Taylor series expansion of e^{1 โ€“ \cos x}e1โˆ’cosx up to and including terms of degree four.

  • \displaystyle e^{1 โ€“ \cos x} = 1 + \frac{x^2}{2} + \frac{x^4}{12} + \text{H.O.T.}e1โˆ’cosx=1+2x2โ€‹+12x4โ€‹+H.O.T.
  • \displaystyle e^{1 โ€“ \cos x} = 1 โ€“ \frac{x^2}{2} + \frac{x^4}{12} + \text{H.O.T.}e1โˆ’cosx=1โˆ’2x2โ€‹+12x4โ€‹+H.O.T.
  • \displaystyle e^{1 โ€“ \cos x} = 1 โ€“ \frac{x^2}{2} + \frac{x^4}{8} + \text{H.O.T.}e1โˆ’cosx=1โˆ’2x2โ€‹+8x4โ€‹+H.O.T.
  • \displaystyle e^{1 โ€“ \cos x} = 1 โ€“ \frac{x^2}{2} โ€“ \frac{x^4}{24} + \text{H.O.T.}e1โˆ’cosx=1โˆ’2x2โ€‹โˆ’24x4โ€‹+H.O.T.
  • \displaystyle e^{1 โ€“ \cos x} = 1 + \frac{x^2}{2} โ€“ \frac{x^4}{24} + \text{H.O.T.}e1โˆ’cosx=1+2x2โ€‹โˆ’24x4โ€‹+H.O.T.
  • \displaystyle e^{1 โ€“ \cos x} = 1 + \frac{x^2}{2} + \frac{x^4}{8} + \text{H.O.T.}e1โˆ’cosx=1+2x2โ€‹+8x4โ€‹+H.O.T.

Q4. Compute the first three nonzero terms of the Taylor series of \cos (\sin x)cos(sinx)

  • \displaystyle \cos(\sin x) = 1 โ€“ \frac{x^2}{2} + \frac{5x^4}{4} + \text{H.O.T.}cos(sinx)=1โˆ’2x2โ€‹+45x4โ€‹+H.O.T.
  • \displaystyle \cos(\sin x) = 1 โ€“ \frac{x^2}{2} + \frac{x^4}{6} + \text{H.O.T.}cos(sinx)=1โˆ’2x2โ€‹+6x4โ€‹+H.O.T.
  • \displaystyle \cos(\sin x) = 1 โ€“ \frac{x^2}{2} + \frac{x^4}{4} + \text{H.O.T.}cos(sinx)=1โˆ’2x2โ€‹+4x4โ€‹+H.O.T.
  • \displaystyle \cos(\sin x) = 1 โ€“ \frac{x^2}{2} + \frac{5x^4}{6} + \text{H.O.T.}cos(sinx)=1โˆ’2x2โ€‹+65x4โ€‹+H.O.T.
  • \displaystyle \cos(\sin x) = 1 โ€“ \frac{x^2}{2} + \frac{5x^4}{24} + \text{H.O.T.}cos(sinx)=1โˆ’2x2โ€‹+245x4โ€‹+H.O.T.
  • \displaystyle \cos(\sin x) = 1 โ€“ \frac{x^2}{2} + \frac{x^4}{24} + \text{H.O.T.}cos(sinx)=1โˆ’2x2โ€‹+24x4โ€‹+H.O.T.

Q5. Compute the first three nonzero terms of the Taylor series of \displaystyle \frac{\cos(2x) โ€“ 1}{x^2}x2cos(2x)โˆ’1โ€‹.

  • \displaystyle \frac{\cos(2x) โ€“ 1}{x^2} = -2 + \frac{x^2}{6} โ€“ \frac{2x^4}{45} + \text{H.O.T.}x2cos(2x)โˆ’1โ€‹=โˆ’2+6x2โ€‹โˆ’452x4โ€‹+H.O.T.
  • \displaystyle \frac{\cos(2x) โ€“ 1}{x^2} = -2 + \frac{2x^2}{3} โ€“ \frac{4x^4}{45} + \text{H.O.T.}x2cos(2x)โˆ’1โ€‹=โˆ’2+32x2โ€‹โˆ’454x4โ€‹+H.O.T.
  • \displaystyle \frac{\cos(2x) โ€“ 1}{x^2} = 2 โ€“ \frac{x^2}{6} + \frac{x^4}{45} + \text{H.O.T.}x2cos(2x)โˆ’1โ€‹=2โˆ’6x2โ€‹+45x4โ€‹+H.O.T.
  • \displaystyle \frac{\cos(2x) โ€“ 1}{x^2} = -\frac{1}{2} + \frac{x^2}{24} โ€“ \frac{x^4}{720} + \text{H.O.T.}x2cos(2x)โˆ’1โ€‹=โˆ’21โ€‹+24x2โ€‹โˆ’720x4โ€‹+H.O.T.
  • \displaystyle \frac{\cos(2x) โ€“ 1}{x^2} = -2 + \frac{2x^2}{3} +\frac{x^4}{45} + \text{H.O.T.}x2cos(2x)โˆ’1โ€‹=โˆ’2+32x2โ€‹+45x4โ€‹+H.O.T.
  • The function does not have a Taylor series about x=0x=0.

Q6. Determine the Taylor series expansion of \cos x \sin 2xcosxsin2x up to terms of degree five. Hint: donโ€™t start computing derivatives!

  • \displaystyle \cos x \sin 2x = 2x โ€“ \frac{7x^3}{3} + \frac{61x^5}{60} + \text{H.O.T.}cosxsin2x=2xโˆ’37x3โ€‹+6061x5โ€‹+H.O.T.
  • \displaystyle \cos x \sin 2x = 2x โ€“ \frac{7x^3}{3} + \frac{3x^5}{4} + \text{H.O.T.}cosxsin2x=2xโˆ’37x3โ€‹+43x5โ€‹+H.O.T.
  • \displaystyle \cos x \sin 2x = 2x โ€“ \frac{4x^3}{3} + \frac{3x^5}{4} + \text{H.O.T.}cosxsin2x=2xโˆ’34x3โ€‹+43x5โ€‹+H.O.T.
  • \displaystyle \cos x \sin 2x = 2x โ€“ \frac{4x^3}{3} + \frac{7x^5}{20} + \text{H.O.T.}cosxsin2x=2xโˆ’34x3โ€‹+207x5โ€‹+H.O.T.
  • \displaystyle \cos x \sin 2x = 2x โ€“ \frac{7x^3}{3} + \frac{7x^5}{20} + \text{H.O.T.}cosxsin2x=2xโˆ’37x3โ€‹+207x5โ€‹+H.O.T.
  • \displaystyle \cos x \sin 2x = 2x โ€“ \frac{4x^3}{3} + \frac{61x^5}{60} + \text{H.O.T.}cosxsin2x=2xโˆ’34x3โ€‹+6061x5โ€‹+H.O.T.

Q7. Compute the Taylor series expansion of x^{-1} e^x \sin xxโˆ’1exsinx up to and including terms of degree four.

  • \displaystyle x^{-1} e^x \sin x = 1 + x + \frac{7x^2}{6} + \frac{x^3}{24} + \frac{3x^4}{40} + \text{H.O.T.}xโˆ’1exsinx=1+x+67x2โ€‹+24x3โ€‹+403x4โ€‹+H.O.T.
  • \displaystyle x^{-1} e^x \sin x = 1 + x + \frac{7x^2}{6} + \frac{x^3}{3} + \frac{2x^4}{15} + \text{H.O.T.}xโˆ’1exsinx=1+x+67x2โ€‹+3x3โ€‹+152x4โ€‹+H.O.T.
  • \displaystyle x^{-1} e^x \sin x = 1 + x + \frac{7x^2}{6} + \frac{5x^3}{24} โ€“ \frac{x^4}{60} + \text{H.O.T.}xโˆ’1exsinx=1+x+67x2โ€‹+245x3โ€‹โˆ’60x4โ€‹+H.O.T.
  • \displaystyle x^{-1} e^x \sin x = 1 + x + \frac{x^2}{3} โ€“ \frac{x^4}{24} + \text{H.O.T.}xโˆ’1exsinx=1+x+3x2โ€‹โˆ’24x4โ€‹+H.O.T.
  • \displaystyle x^{-1} e^x \sin x = 1 + x + \frac{x^2}{3} โ€“ \frac{3x^4}{40} + \text{H.O.T.}xโˆ’1exsinx=1+x+3x2โ€‹โˆ’403x4โ€‹+H.O.T.
  • \displaystyle x^{-1} e^x \sin x = 1 + x + \frac{x^2}{3} โ€“ \frac{x^4}{30} + \text{H.O.T.}xโˆ’1exsinx=1+x+3x2โ€‹โˆ’30x4โ€‹+H.O.T.

Q8. Determine the first three nonzero terms of the Taylor expansion of \displaystyle \frac{e^{2x} \sinh x}{2x}2xe2xsinhxโ€‹.

  • \displaystyle \frac{e^{2x} \sinh x}{2x} = \frac{1}{2} + \frac{x}{2} + \frac{13x^2}{12} + \text{H.O.T.}2xe2xsinhxโ€‹=21โ€‹+2xโ€‹+1213x2โ€‹+H.O.T.
  • \displaystyle \frac{e^{2x} \sinh x}{2x} = \frac{1}{2} + \frac{x}{2} + \frac{x^2}{12} + \text{H.O.T.}2xe2xsinhxโ€‹=21โ€‹+2xโ€‹+12x2โ€‹+H.O.T.
  • \displaystyle \frac{e^{2x} \sinh x}{2x} = \frac{1}{2} + x + \frac{13x^2}{12} + \text{H.O.T.}2xe2xsinhxโ€‹=21โ€‹+x+1213x2โ€‹+H.O.T.
  • \displaystyle \frac{e^{2x} \sinh x}{2x} = \frac{1}{2} + x + \frac{11x^2}{12} + \text{H.O.T.}2xe2xsinhxโ€‹=21โ€‹+x+1211x2โ€‹+H.O.T.
  • \displaystyle \frac{e^{2x} \sinh x}{2x} = \frac{1}{2} + x + \frac{x^2}{12} + \text{H.O.T.}2xe2xsinhxโ€‹=21โ€‹+x+12x2โ€‹+H.O.T.
  • \displaystyle \frac{e^{2x} \sinh x}{2x} = \frac{1}{2} + \frac{x}{2} + \frac{11x^2}{12} + \text{H.O.T.}2xe2xsinhxโ€‹=21โ€‹+2xโ€‹+1211x2โ€‹+H.O.T.

Quiz 4: Challenge Homework: Computing Taylor Series Quiz Answers

Q1. Suppose that a function f(x)f(x) is reasonable, so that it has a Taylor series

f(x) = c_0 + c_1 x + c_2 x^2 + \text{H.O.T.}f(x)=c0โ€‹+c1โ€‹x+c2โ€‹x2+H.O.T.

with c_0 \neq 0c0โ€‹๎€ โ€‹=0. Then the reciprocal function g(x) = 1 / f(x)g(x)=1/f(x) is defined at x=0x=0 and is also reasonable. Let

g(x) = b_0 + b_1 x + b_2 x^2 + \text{H.O.T.}g(x)=b0โ€‹+b1โ€‹x+b2โ€‹x2+H.O.T.

be its Taylor series. Because f(x)g(x) = 1f(x)g(x)=1, we have

\big( c_ 0 + c_1 x + c_2 x^2 + \text{H.O.T.} \big) \big( b_ 0 + b_1 x + b_2 x^2 + \text{H.O.T.} \big) = 1 + 0x + 0x^2 + \text{H.O.T.}(c0โ€‹+c1โ€‹x+c2โ€‹x2+H.O.T.)(b0โ€‹+b1โ€‹x+b2โ€‹x2+H.O.T.)=1+0x+0x2+H.O.T.

Multiplying out the two series on the left hand side and combining like terms, we obtain

c_0 b_0 + \big( c_0 b_1 + c_1 b_0 \big) x + \big( c_0 b_2 + c_1 b_1 + c_2 b_0 \big) x^2 + \text{H.O.T.} = 1 + 0x + 0x^2 + \text{H.O.T.}c0โ€‹b0โ€‹+(c0โ€‹b1โ€‹+c1โ€‹b0โ€‹)x+(c0โ€‹b2โ€‹+c1โ€‹b1โ€‹+c2โ€‹b0โ€‹)x2+H.O.T.=1+0x+0x2+H.O.T.

Equating the coefficients of each power of xx on both sides of this expression, we arrive at the (infinite!) system of equations

c_0 b_0 = 1\\ c_0 b_1 + c_1 b_0 = 0\\ c_0 b_2 + c_1 b_1 + c_2 b_0 = 0\\ \ldotsc0โ€‹b0โ€‹=1c0โ€‹b1โ€‹+c1โ€‹b0โ€‹=0c0โ€‹b2โ€‹+c1โ€‹b1โ€‹+c2โ€‹b0โ€‹=0โ€ฆ

relating the coefficients of the Taylor series of f(x)f(x) to those of the Taylor series of g(x)g(x). For example, the first equation yields b_0 = 1 / c_0b0โ€‹=1/c0โ€‹, while the second gives b_1 = -c_1 b_0 / c_0 = โ€“ c_1 / c_0^2b1โ€‹=โˆ’c1โ€‹b0โ€‹/c0โ€‹=โˆ’c1โ€‹/c02โ€‹.

Using the above reasoning for f(x) = \cos xf(x)=cosx, determine the Taylor series of g(x) = \sec xg(x)=secx up to terms of degree two.

  • \sec x = 1 โ€“ x^2 + \text{H.O.T.}secx=1โˆ’x2+H.O.T.
  • \displaystyle \sec x = 1 + \frac{x^2}{2} + \text{H.O.T.}secx=1+2x2โ€‹+H.O.T.
  • \displaystyle \sec x = 1 โ€“ \frac{x^2}{2} + \text{H.O.T.}secx=1โˆ’2x2โ€‹+H.O.T.
  • \sec x = 1 + 2x^2 + \text{H.O.T.}secx=1+2x2+H.O.T.
  • \sec x = 1 + x^2 + \text{H.O.T.}secx=1+x2+H.O.T.
  • \sec x = 1 โ€“ 2x^2 + \text{H.O.T.}secx=1โˆ’2x2+H.O.T.

Quiz 5: Core Homework: Convergence Quiz Answers

Q1. Use the geometric series to compute the Taylor series for \displaystyle f(x) = \frac{1}{2 โ€“ x}f(x)=2โˆ’x1โ€‹. Where does this series converge? Hint: \displaystyle \frac{1}{2 โ€“ x}=\frac{1}{2}\frac{1}{1-\frac{x}{2}}2โˆ’x1โ€‹=21โ€‹1โˆ’2xโ€‹1โ€‹

  • \displaystyle f(x) = \sum_{k=0}^\infty \frac{x^k}{2^{k+1}}f(x)=k=0โˆ‘โˆžโ€‹2k+1xkโ€‹. The series converges for \displaystyle |x| < 2โˆฃxโˆฃ<2.
  • \displaystyle f(x) = \sum_{k=0}^\infty \frac{x^k}{2^{k+1}}f(x)=k=0โˆ‘โˆžโ€‹2k+1xkโ€‹. The series converges for \displaystyle |x| < \frac{1}{2}โˆฃxโˆฃ<21โ€‹.
  • \displaystyle f(x) = \frac{1}{2}\sum_{k=0}^\infty x^kf(x)=21โ€‹k=0โˆ‘โˆžโ€‹xk. The series converges for \displaystyle |x| < 1โˆฃxโˆฃ<1.
  • \displaystyle f(x) = \frac{1}{2}\sum_{k=0}^\infty x^kf(x)=21โ€‹k=0โˆ‘โˆžโ€‹xk. The series converges for \displaystyle |x| < 2โˆฃxโˆฃ<2.
  • \displaystyle f(x) = \sum_{k=0}^\infty \frac{x^k}{2^{k}}f(x)=k=0โˆ‘โˆžโ€‹2kxkโ€‹. The series converges for \displaystyle |x| < 2โˆฃxโˆฃ<2.
  • \displaystyle f(x) = \frac{1}{2}\sum_{k=0}^\infty x^kf(x)=21โ€‹k=0โˆ‘โˆžโ€‹xk. The series converges for \displaystyle |x| < \frac{1}{2}โˆฃxโˆฃ<21โ€‹.

Q2. Compute and simplify the full Taylor series about x=0x=0 of the function \displaystyle f(x) = \frac{1}{2-x} + \frac{1}{2 โ€“ 3x}f(x)=2โˆ’x1โ€‹+2โˆ’3x1โ€‹. Where does this series converge?

  • \displaystyle f(x) = \sum_{k=0}^\infty \frac{1 + 3^k}{2^{k+1}} x^kf(x)=k=0โˆ‘โˆžโ€‹2k+11+3kโ€‹xk. The series converges for \displaystyle |x| < \frac{2}{3}โˆฃxโˆฃ<32โ€‹.
  • \displaystyle f(x) = \sum_{k=0}^\infty \frac{1 + 3^k}{2^{k+1}} x^kf(x)=k=0โˆ‘โˆžโ€‹2k+11+3kโ€‹xk. The series converges for \displaystyle |x| < \frac{3}{2}โˆฃxโˆฃ<23โ€‹.
  • \displaystyle f(x) = \sum_{k=0}^\infty (-1)^k \frac{1 + 3^k}{2^{k+1}} x^kf(x)=k=0โˆ‘โˆžโ€‹(โˆ’1)k2k+11+3kโ€‹xk. The series converges for \displaystyle |x| < \frac{2}{3}โˆฃxโˆฃ<32โ€‹.
  • \displaystyle f(x) = \sum_{k=0}^\infty (-1)^k \frac{1 + 3^k}{2^{k+1}} x^kf(x)=k=0โˆ‘โˆžโ€‹(โˆ’1)k2k+11+3kโ€‹xk. The series converges for |x| < 1โˆฃxโˆฃ<1.
  • \displaystyle f(x) = \sum_{k=0}^\infty (-1)^k \frac{1 + 3^k}{2^{k+1}} x^kf(x)=k=0โˆ‘โˆžโ€‹(โˆ’1)k2k+11+3kโ€‹xk. The series converges for \displaystyle |x| < \frac{3}{2}โˆฃxโˆฃ<23โ€‹.
  • \displaystyle f(x) = \sum_{k=0}^\infty \frac{1 + 3^k}{2^{k+1}} x^kf(x)=k=0โˆ‘โˆžโ€‹2k+11+3kโ€‹xk. The series converges for |x| < 1โˆฃxโˆฃ<1.

Q3. Which of the following is the Taylor series of \displaystyle \ln \frac{1}{1-x}ln1โˆ’x1โ€‹ about x=0x=0 up to and including the terms of order three?

  • \displaystyle \ln \frac{1}{1-x} = x-\frac{1}{2}x^2+\frac{1}{3}x^3 + \text{H.O.T.}ln1โˆ’x1โ€‹=xโˆ’21โ€‹x2+31โ€‹x3+H.O.T.
  • \displaystyle \ln \frac{1}{1-x} = 1+x+\frac{3}{2}x^2+x^3 + \text{H.O.T.}ln1โˆ’x1โ€‹=1+x+23โ€‹x2+x3+H.O.T.
  • \displaystyle \ln \frac{1}{1-x} = x+\frac{1}{2}x^2+ \frac{1}{3}x^3 + \text{H.O.T.}ln1โˆ’x1โ€‹=x+21โ€‹x2+31โ€‹x3+H.O.T.
  • \displaystyle \ln \frac{1}{1-x} = 1+x-x^2+\frac{1}{3}x^3 + \text{H.O.T.}ln1โˆ’x1โ€‹=1+xโˆ’x2+31โ€‹x3+H.O.T.
  • \displaystyle \ln \frac{1}{1-x} = x+\frac{1}{2}x^2+ \frac{1}{6}x^3 + \text{H.O.T.}ln1โˆ’x1โ€‹=x+21โ€‹x2+61โ€‹x3+H.O.T.
  • \displaystyle \ln \frac{1}{1-x} = 1 + x+\frac{1}{2}x^2+ \frac{1}{3}x^3 + \text{H.O.T.}ln1โˆ’x1โ€‹=1+x+21โ€‹x2+31โ€‹x3+H.O.T.

Q4. Use the binomial series to find the Taylor series about x = 0x=0 of the function \displaystyle f(x) = \left(9-x^2\right)^{-1/2}f(x)=(9โˆ’x2)โˆ’1/2. Indicate for which values of xx the series converges to the function.

  • \displaystyle f(x) = \sum_{k=0}^\infty {-1/2 \choose k} \frac{x^{2k}}{3^{2k}}f(x)=k=0โˆ‘โˆžโ€‹(kโˆ’1/2โ€‹)32kx2kโ€‹ for \displaystyle |x| < \frac{1}{3}โˆฃxโˆฃ<31โ€‹.
  • \displaystyle f(x) = \sum_{k=0}^\infty (-1)^k {-1/2 \choose k} \frac{x^{2k}}{3^{2k-1}}f(x)=k=0โˆ‘โˆžโ€‹(โˆ’1)k(kโˆ’1/2โ€‹)32kโˆ’1x2kโ€‹ for \displaystyle |x| < \frac{1}{3}โˆฃxโˆฃ<31โ€‹.
  • \displaystyle f(x) = \sum_{k=0}^\infty (-1)^k {-1/2 \choose k} \frac{x^{2k}}{3^{2k-1}}f(x)=k=0โˆ‘โˆžโ€‹(โˆ’1)k(kโˆ’1/2โ€‹)32kโˆ’1x2kโ€‹ for |x| < 3โˆฃxโˆฃ<3.
  • \displaystyle f(x) = \sum_{k=0}^\infty (-1)^k {-1/2 \choose k} \frac{x^{2k}}{3^{2k+1}}f(x)=k=0โˆ‘โˆžโ€‹(โˆ’1)k(kโˆ’1/2โ€‹)32k+1x2kโ€‹ for |x| < 3โˆฃxโˆฃ<3.
  • \displaystyle f(x) = \sum_{k=0}^\infty (-1)^k {-1/2 \choose k} \frac{x^{2k}}{3^{2k+1}}f(x)=k=0โˆ‘โˆžโ€‹(โˆ’1)k(kโˆ’1/2โ€‹)32k+1x2kโ€‹ for \displaystyle |x| < \frac{1}{3}โˆฃxโˆฃ<31โ€‹.
  • \displaystyle f(x) = \sum_{k=0}^\infty {-1/2 \choose k} \frac{x^{2k}}{3^{2k}}f(x)=k=0โˆ‘โˆžโ€‹(kโˆ’1/2โ€‹)32kx2kโ€‹ for |x| < 3โˆฃxโˆฃ<3.

Q5. Use the fact that

\arcsin x = \int \!\! \frac{dx}{\sqrt{1-x^2}}arcsinx=โˆซ1โˆ’x2โ€‹dxโ€‹

and the binomial series to find the Taylor series about x=0x=0 of \arcsin xarcsinx up to terms of order five.

  • \displaystyle \arcsin x = x โ€“ \frac{x^3}{6} + \frac{3x^5}{20} + \text{H.O.T.}arcsinx=xโˆ’6x3โ€‹+203x5โ€‹+H.O.T.
  • \displaystyle \arcsin x = x + \frac{x^3}{6} + \frac{3x^5}{40} + \text{H.O.T.}arcsinx=x+6x3โ€‹+403x5โ€‹+H.O.T.
  • \displaystyle \arcsin x = x + \frac{x^3}{6} + \frac{3x^5}{20} + \text{H.O.T.}arcsinx=x+6x3โ€‹+203x5โ€‹+H.O.T.
  • \displaystyle \arcsin x = x โ€“ \frac{x^3}{6} + \frac{3x^5}{40} + \text{H.O.T.}arcsinx=xโˆ’6x3โ€‹+403x5โ€‹+H.O.T.
  • \displaystyle \arcsin x = 1 + x + \frac{x^3}{6} + \frac{3x^5}{20} + \text{H.O.T.}arcsinx=1+x+6x3โ€‹+203x5โ€‹+H.O.T.
  • \displaystyle \arcsin x = 1+ x + \frac{x^3}{6} + \frac{3x^5}{40} + \text{H.O.T.}arcsinx=1+x+6x3โ€‹+403x5โ€‹+H.O.T.

Q6. Compute the Taylor series about x=0x=0 of the function \arctan \left(e^x โ€“ 1 \right)arctan(exโˆ’1) up to terms of degree three.

  • \displaystyle \arctan \left(e^x โ€“ 1 \right) = x โ€“ \frac{x^2}{2} โ€“ \frac{x^3}{3} + \text{H.O.T.}arctan(exโˆ’1)=xโˆ’2x2โ€‹โˆ’3x3โ€‹+H.O.T.
  • \displaystyle \arctan \left(e^x โ€“ 1 \right) = x + \frac{x^2}{2} โ€“ \frac{x^3}{6} + \text{H.O.T.}arctan(exโˆ’1)=x+2x2โ€‹โˆ’6x3โ€‹+H.O.T.
  • \displaystyle \arctan \left(e^x โ€“ 1 \right) = x โ€“ \frac{x^2}{2} + \frac{x^3}{6} + \text{H.O.T.}arctan(exโˆ’1)=xโˆ’2x2โ€‹+6x3โ€‹+H.O.T.
  • \displaystyle \arctan \left(e^x โ€“ 1 \right) = e^x -1- \frac{(e^x-1)^{3}}{3} + \frac{(e^x-1)^5}{5} + \text{H.O.T.}arctan(exโˆ’1)=exโˆ’1โˆ’3(exโˆ’1)3โ€‹+5(exโˆ’1)5โ€‹+H.O.T.
  • \displaystyle \arctan \left(e^x โ€“ 1 \right) = e^x โ€“ \frac{e^{3x}}{3} + \frac{e^{5x}}{5} + \text{H.O.T.}arctan(exโˆ’1)=exโˆ’3e3xโ€‹+5e5xโ€‹+H.O.T.

Q7. In the lecture we saw that the sum of the infinite series 1 + x + x^2 + \cdots1+x+x2+โ‹ฏ equals 1/(1-x)1/(1โˆ’x) as long as |x| < 1โˆฃxโˆฃ<1. In this problem, we will derive a formula for summing the first n+1n+1 terms of the series. That is, we want to calculate

s_n = 1 + x + x^2 + \cdots + x^nsnโ€‹=1+x+x2+โ‹ฏ+xn

The strategy is exactly that of the algebraic proof given in lecture for the sum of the full geometric series: compute the difference s_n โ€“ xs_nsnโ€‹โˆ’xsnโ€‹ and then isolate s_nsnโ€‹. What formula do you get?

  • \displaystyle s_n = \frac{1+x^n}{1-x}snโ€‹=1โˆ’x1+xnโ€‹
  • \displaystyle s_n = \frac{1-x^{n+1}}{1-x}snโ€‹=1โˆ’x1โˆ’xn+1โ€‹
  • \displaystyle s_n = \frac{1-x^n}{1-x}snโ€‹=1โˆ’x1โˆ’xnโ€‹
  • \displaystyle s_n = \frac{1 โ€“ nx}{1-x}snโ€‹=1โˆ’x1โˆ’nxโ€‹
  • \displaystyle s_n = \frac{1+x^{n+1}}{1-x}snโ€‹=1โˆ’x1+xn+1โ€‹
  • \displaystyle s_n = \frac{1 + nx}{1-x}snโ€‹=1โˆ’x1+nxโ€‹

Quiz 6: Challenge Homework: Convergence Quiz Answers

Q1. Compute the Taylor series expansion about x=0x=0 of the function \displaystyle f(x) = \ln \frac{1+2x}{1-2x}f(x)=ln1โˆ’2x1+2xโ€‹. For what values of xx does the series converge?

Hint: use the properties of the logarithm function to separate the quotient inside into two pieces.

  • \displaystyle f(x) = \sum_{k=1}^\infty \frac{2^{2k+2}}{2k+1}x^{2k+1}f(x)=k=1โˆ‘โˆžโ€‹2k+122k+2โ€‹x2k+1 for |x| < 1โˆฃxโˆฃ<1.
  • \displaystyle f(x) = \sum_{k=1}^\infty \frac{2^{2k}}{k}x^{2k}f(x)=k=1โˆ‘โˆžโ€‹k22kโ€‹x2k for \displaystyle |x| < \frac{1}{2}โˆฃxโˆฃ<21โ€‹.
  • \displaystyle f(x) = \sum_{k=1}^\infty \frac{2^{2k}}{k}x^{2k}f(x)=k=1โˆ‘โˆžโ€‹k22kโ€‹x2k for |x| < 1โˆฃxโˆฃ<1.
  • \displaystyle f(x) = \sum_{k=1}^\infty \frac{2^{2k}}{2k-1}x^{2k-1}f(x)=k=1โˆ‘โˆžโ€‹2kโˆ’122kโ€‹x2kโˆ’1 for |x| < 1โˆฃxโˆฃ<1.
  • \displaystyle f(x) = \sum_{k=1}^\infty \frac{2^{2k+2}}{2k+1}x^{2k+1}f(x)=k=1โˆ‘โˆžโ€‹2k+122k+2โ€‹x2k+1 for \displaystyle |x| < \frac{1}{2}โˆฃxโˆฃ<21โ€‹.
  • \displaystyle f(x) = \sum_{k=1}^\infty \frac{2^{2k}}{2k-1}x^{2k-1}f(x)=k=1โˆ‘โˆžโ€‹2kโˆ’122kโ€‹x2kโˆ’1 for \displaystyle |x| < \frac{1}{2}โˆฃxโˆฃ<21โ€‹.

Q2. We have derived Taylor series expansions about x = 0x=0 for the sine and arctangent functions. The first one converges over the whole real line, but the second one does so only when its input is smaller than 1 in absolute value. If you try using these to find the Taylor series of

\arctan\left(\frac{1}{2}\sin x \right)arctan(21โ€‹sinx)

where would the resulting series converge to the function?

Warning: there is a fundamental mistake in this problem, whose understanding requires some Complex Analysis.

  • \displaystyle |x| < \frac{1}{2}โˆฃxโˆฃ<21โ€‹
  • \mathbb{R} = (-\infty, +\infty)R=(โˆ’โˆž,+โˆž)
  • |x| < 1โˆฃxโˆฃ<1
  • |x| < 2โˆฃxโˆฃ<2

Quiz 7: Core Homework: Expansion Points Quiz Answers

Q1. Which of the following are Taylor series about x=1x=1 ? Check all that apply.

  • \displaystyle \sum_{k=0}^\infty \frac{2^k}{k!}(x-1)^kk=0โˆ‘โˆžโ€‹k!2kโ€‹(xโˆ’1)k
  • \displaystyle 1 + (x-1) + (x-1)^2 + (x-1)^3 + \text{H.O.T.}1+(xโˆ’1)+(xโˆ’1)2+(xโˆ’1)3+H.O.T.
  • \displaystyle \frac{1}{2} + 3(x-1) + \frac{4}{45}(x-1)^2 + \frac{1}{90}(x-1)^321โ€‹+3(xโˆ’1)+454โ€‹(xโˆ’1)2+901โ€‹(xโˆ’1)3
  • \displaystyle 1 + x^2 + \frac{3}{16}x^3 + \frac{1}{90}x^4 + \text{H.O.T.}1+x2+163โ€‹x3+901โ€‹x4+H.O.T.
  • \displaystyle \sum_{k=0}^\infty \frac{\pi^{2k}}{(2k+1)!}(x-1)^{k-1}k=0โˆ‘โˆžโ€‹(2k+1)!ฯ€2kโ€‹(xโˆ’1)kโˆ’1
  • 25\ln (x-1) + (x-1)^2 + (x-1)^4 + \text{H.O.T.}25ln(xโˆ’1)+(xโˆ’1)2+(xโˆ’1)4+H.O.T.

Q2. Which of the following is the Taylor series expansion about x = \pix=ฯ€ of \cos 2xcos2x?

  • \displaystyle \cos 2x = \sum_{k=0}^\infty (-1)^k \frac{(x-\pi)^{2k+1}}{2^{2k+1}(2k+1)!}cos2x=k=0โˆ‘โˆžโ€‹(โˆ’1)k22k+1(2k+1)!(xโˆ’ฯ€)2k+1โ€‹
  • \displaystyle \cos 2x = \sum_{k=0}^\infty (-1)^k 2^k \frac{(x-\pi)^{2k}}{(2k)!}cos2x=k=0โˆ‘โˆžโ€‹(โˆ’1)k2k(2k)!(xโˆ’ฯ€)2kโ€‹
  • \displaystyle \cos 2x = \sum_{k=0}^\infty (-1)^k \frac{(x-\pi)^{2k}}{2^{2k}(2k)!}cos2x=k=0โˆ‘โˆžโ€‹(โˆ’1)k22k(2k)!(xโˆ’ฯ€)2kโ€‹
  • \displaystyle \cos 2x = \sum_{k=0}^\infty (-1)^k 2^{2k} \frac{(x-\pi)^{2k}}{(2k)!}cos2x=k=0โˆ‘โˆžโ€‹(โˆ’1)k22k(2k)!(xโˆ’ฯ€)2kโ€‹
  • \displaystyle \cos 2x = \sum_{k=0}^\infty (-1)^k 2^k \frac{(x-\pi)^{2k+1}}{(2k+1)!}cos2x=k=0โˆ‘โˆžโ€‹(โˆ’1)k2k(2k+1)!(xโˆ’ฯ€)2k+1โ€‹
  • \displaystyle \cos 2x = \sum_{k=0}^\infty (-1)^k 2^{2k+1} \frac{(x-\pi)^{2k+1}}{(2k+1)!}cos2x=k=0โˆ‘โˆžโ€‹(โˆ’1)k22k+1(2k+1)!(xโˆ’ฯ€)2k+1โ€‹

Q3. Which of the following is the Taylor series expansion about x = 2x=2 of \displaystyle \frac{1}{x^2}x21โ€‹ ?

  • \displaystyle \frac{1}{x^2} = \frac{1}{4} + \frac{1}{4}(x-2) + \frac{3}{8}(x-2)^2 + \text{H.O.T.}x21โ€‹=41โ€‹+41โ€‹(xโˆ’2)+83โ€‹(xโˆ’2)2+H.O.T.
  • \displaystyle \frac{1}{x^2} = \frac{1}{4} + \frac{1}{4}(x-2) + \frac{3}{16}(x-2)^2 + \text{H.O.T.}x21โ€‹=41โ€‹+41โ€‹(xโˆ’2)+163โ€‹(xโˆ’2)2+H.O.T.
  • \displaystyle \frac{1}{x^2} = \frac{1}{4} + \frac{1}{2}(x-2) + \frac{3}{64}(x-2)^2 + \text{H.O.T.}x21โ€‹=41โ€‹+21โ€‹(xโˆ’2)+643โ€‹(xโˆ’2)2+H.O.T.
  • \displaystyle \frac{1}{x^2} = \frac{1}{4} โ€“ \frac{1}{2}(x-2) + \frac{3}{64}(x-2)^2 + \text{H.O.T.}x21โ€‹=41โ€‹โˆ’21โ€‹(xโˆ’2)+643โ€‹(xโˆ’2)2+H.O.T.
  • \displaystyle \frac{1}{x^2} = \frac{1}{4} โ€“ \frac{1}{4}(x-2) + \frac{3}{8}(x-2)^2 + \text{H.O.T.}x21โ€‹=41โ€‹โˆ’41โ€‹(xโˆ’2)+83โ€‹(xโˆ’2)2+H.O.T.
  • \displaystyle \frac{1}{x^2} = \frac{1}{4} โ€“ \frac{1}{4}(x-2) + \frac{3}{16}(x-2)^2 + \text{H.O.T.}x21โ€‹=41โ€‹โˆ’41โ€‹(xโˆ’2)+163โ€‹(xโˆ’2)2+H.O.T.

Q4. Which of the following is the Taylor series expansion about x = 1x=1 of \arctan xarctanx ?

  • \displaystyle \arctan x = \frac{\pi}{4} + \frac{1}{\sqrt{2}}(x-1) + \frac{1}{4}(x-1)^2 + \text{H.O.T.}arctanx=4ฯ€โ€‹+2โ€‹1โ€‹(xโˆ’1)+41โ€‹(xโˆ’1)2+H.O.T.
  • \displaystyle \arctan x = \frac{\pi}{4} + \frac{1}{2}(x-1) โ€“ \frac{1}{8}(x-1)^2 + \text{H.O.T.}arctanx=4ฯ€โ€‹+21โ€‹(xโˆ’1)โˆ’81โ€‹(xโˆ’1)2+H.O.T.
  • \displaystyle \arctan x = \frac{\pi}{4} + \frac{1}{2}(x-1) + \frac{1}{8}(x-1)^2 + \text{H.O.T.}arctanx=4ฯ€โ€‹+21โ€‹(xโˆ’1)+81โ€‹(xโˆ’1)2+H.O.T.
  • \displaystyle \arctan x = \frac{\pi}{4} + \frac{1}{\sqrt{2}}(x-1) โ€“ \frac{1}{4}(x-1)^2 + \text{H.O.T.}arctanx=4ฯ€โ€‹+2โ€‹1โ€‹(xโˆ’1)โˆ’41โ€‹(xโˆ’1)2+H.O.T.
  • \displaystyle \arctan x = \frac{\pi}{4} + \frac{1}{2}(x-1) + \frac{1}{4}(x-1)^2 + \text{H.O.T.}arctanx=4ฯ€โ€‹+21โ€‹(xโˆ’1)+41โ€‹(xโˆ’1)2+H.O.T.
  • \displaystyle \arctan x = \frac{\pi}{4} + \frac{1}{2}(x-1) โ€“ \frac{1}{4}(x-1)^2 + \text{H.O.T.}arctanx=4ฯ€โ€‹+21โ€‹(xโˆ’1)โˆ’41โ€‹(xโˆ’1)2+H.O.T.

Q5. Compute the Taylor series about x=2x=2 of f(x) = \sqrt{x+2}f(x)=x+2โ€‹ up to terms of order two.

Hint: use the binomial series.

  • \displaystyle \sqrt{x+2} = 2 + (x-2) โ€“ \frac{1}{4}(x-2)^2 + \text{H.O.T.}x+2โ€‹=2+(xโˆ’2)โˆ’41โ€‹(xโˆ’2)2+H.O.T.
  • \displaystyle \sqrt{x+2} = 2 + \frac{1}{4}(x-2) โ€“ \frac{1}{32}(x-2)^2 + \text{H.O.T.}x+2โ€‹=2+41โ€‹(xโˆ’2)โˆ’321โ€‹(xโˆ’2)2+H.O.T.
  • \displaystyle \sqrt{x+2} = 2 + \frac{1}{2}(x-2) โ€“ \frac{1}{64}(x-2)^2 + \text{H.O.T.}x+2โ€‹=2+21โ€‹(xโˆ’2)โˆ’641โ€‹(xโˆ’2)2+H.O.T.
  • \displaystyle \sqrt{x+2} = 2 + \frac{1}{2}(x-2) โ€“ \frac{1}{8}(x-2)^2 + \text{H.O.T.}x+2โ€‹=2+21โ€‹(xโˆ’2)โˆ’81โ€‹(xโˆ’2)2+H.O.T.
  • \displaystyle \sqrt{x+2} = 2 + (x-2) โ€“ \frac{1}{16}(x-2)^2 + \text{H.O.T.}x+2โ€‹=2+(xโˆ’2)โˆ’161โ€‹(xโˆ’2)2+H.O.T.
  • \displaystyle \sqrt{x+2} = 2 + \frac{1}{4}(x-2) โ€“ \frac{1}{64}(x-2)^2 + \text{H.O.T.}x+2โ€‹=2+41โ€‹(xโˆ’2)โˆ’641โ€‹(xโˆ’2)2+H.O.T.

Quiz 8: Challenge Homework: Expansion Points Quiz Answers

Q1. We know that \displaystyle \frac{1}{x}x1โ€‹ does not have a Taylor series expansion about x=0x=0, since the function blows up at that point. But we can find a Taylor series about the point x=1x=1. The obvious strategy is to calculate, using induction, all the derivatives of \displaystyle \frac{1}{x}x1โ€‹ at x=1x=1. A more interesting approach (and one that will be useful in cases in which computing derivatives would be too burdensome) is to use what we know about Taylor series about the origin: write x = 1+hx=1+h and expand \displaystyle \frac{1}{x}x1โ€‹ in a polynomial series on hh. Remember to substitute hh in terms of xx at the end. What is the resulting series and for which values of xx does it converge to the function?

  • \displaystyle \frac{1}{x} = \sum_{k=0}^\infty (-1)^k (x-1)^kx1โ€‹=k=0โˆ‘โˆžโ€‹(โˆ’1)k(xโˆ’1)k for |x| < 1โˆฃxโˆฃ<1
  • \displaystyle \frac{1}{x} = \sum_{k=0}^\infty (-1)^k (x-1)^kx1โ€‹=k=0โˆ‘โˆžโ€‹(โˆ’1)k(xโˆ’1)k for 0 < x < 20<x<2
  • \displaystyle \frac{1}{x} = \sum_{k=0}^\infty (x-1)^kx1โ€‹=k=0โˆ‘โˆžโ€‹(xโˆ’1)k for 0 < x < 20<x<2
  • \displaystyle \frac{1}{x} = \sum_{k=0}^\infty (x-1)^kx1โ€‹=k=0โˆ‘โˆžโ€‹(xโˆ’1)k for |x| < 1โˆฃxโˆฃ<1
  • \displaystyle \frac{1}{x} = \sum_{k=0}^\infty (-1)^k x^kx1โ€‹=k=0โˆ‘โˆžโ€‹(โˆ’1)kxk for 0 < x < 20<x<2
  • \displaystyle \frac{1}{x} = \sum_{k=0}^\infty x^kx1โ€‹=k=0โˆ‘โˆžโ€‹xk for 0 < x < 20<x<2

Q2. Which of the following is the Taylor series expansion about x=2x=2 of the function \displaystyle f(x) = \frac{1}{1 โ€“ x^2}f(x)=1โˆ’x21โ€‹ ? For which values of xx does the series converge to the function?

Hint: start by factoring the denominator, and then use the strategy in the previous problem, this time with h = x-2h=xโˆ’2.

  • \displaystyle f(x) = -\frac{1}{3} + \frac{4}{9} (x-2) โ€“ \frac{13}{27} (x-2)^2 + \text{H.O.T.}f(x)=โˆ’31โ€‹+94โ€‹(xโˆ’2)โˆ’2713โ€‹(xโˆ’2)2+H.O.T. for |x| < 1โˆฃxโˆฃ<1.
  • \displaystyle f(x) = 1 + (x-2)^2 + (x-2)^4 + \text{H.O.T.}f(x)=1+(xโˆ’2)2+(xโˆ’2)4+H.O.T. for 1 < x < 31<x<3.
  • \displaystyle f(x) = 1 โ€“ \frac{4}{3} (x-2) + \frac{13}{9} (x-2)^2 + \text{H.O.T.}f(x)=1โˆ’34โ€‹(xโˆ’2)+913โ€‹(xโˆ’2)2+H.O.T. for |x| < 1โˆฃxโˆฃ<1.
  • \displaystyle f(x) = -\frac{1}{3} + \frac{4}{9} (x-2) โ€“ \frac{13}{27} (x-2)^2 + \text{H.O.T.}f(x)=โˆ’31โ€‹+94โ€‹(xโˆ’2)โˆ’2713โ€‹(xโˆ’2)2+H.O.T. for 1 < x < 31<x<3.
  • \displaystyle f(x) = 1 โ€“ \frac{4}{3} (x-2) + \frac{13}{9} (x-2)^2 + \text{H.O.T.}f(x)=1โˆ’34โ€‹(xโˆ’2)+913โ€‹(xโˆ’2)2+H.O.T. for 1 < x < 31<x<3.
  • \displaystyle f(x) = 1 + x^2 + x^4 + \text{H.O.T.}f(x)=1+x2+x4+H.O.T. for |x| < 1โˆฃxโˆฃ<1.

Q3. Compute the Taylor series expansion about x=-2x=โˆ’2 of the function \displaystyle f(x) = \frac{-1}{x^2 + 4x + 3}f(x)=x2+4x+3โˆ’1โ€‹. For which values of xx does the series converge to the function?

Hint: try completing the square in the denominator.

  • \displaystyle f(x) = \sum_{k=0}^\infty (x+2)^{2k}f(x)=k=0โˆ‘โˆžโ€‹(x+2)2k for |x| < 1โˆฃxโˆฃ<1.
  • \displaystyle f(x) = \sum_{k=0}^\infty (-1)^k (x+2)^{2k}f(x)=k=0โˆ‘โˆžโ€‹(โˆ’1)k(x+2)2k for |x| < 1โˆฃxโˆฃ<1.
  • \displaystyle f(x) = \sum_{k=0}^\infty (x+2)^{2k}f(x)=k=0โˆ‘โˆžโ€‹(x+2)2k for -3 < x < -1โˆ’3<x<โˆ’1.
  • \displaystyle f(x) = \sum_{k=0}^\infty (-1)^k (x+2)^{2k}f(x)=k=0โˆ‘โˆžโ€‹(โˆ’1)k(x+2)2k for -3 < x < -1โˆ’3<x<โˆ’1.
  • \displaystyle f(x) = \sum_{k=0}^\infty \frac{1}{2^k}(x+2)^{2k}f(x)=k=0โˆ‘โˆžโ€‹2k1โ€‹(x+2)2k for -3 < x < -1โˆ’3<x<โˆ’1.
  • \displaystyle f(x) = \sum_{k=0}^\infty \frac{1}{2^k}(x+2)^{2k}f(x)=k=0โˆ‘โˆžโ€‹2k1โ€‹(x+2)2k for |x| < 1โˆฃxโˆฃ<1.

Q4. What would it mean to Taylor-expand a function f(x)f(x) about x=+\inftyx=+โˆž? Well, trying to take derivatives at infinity and using them as coefficients for terms of the form (x-\infty)^k(xโˆ’โˆž)k seemsโ€ฆ wrong. Letโ€™s try the following instead. If \lim_{x\to\infty}f(x)=Llimxโ†’โˆžโ€‹f(x)=L is finite, then, clearly the `zeroth order termโ€™ in the expansion should be LL. What next? Let z=\displaystyle\frac{1}{x}z=x1โ€‹. Then x\to+\inftyxโ†’+โˆž is equivalent to z\to 0^+zโ†’0+. Try Taylor-expanding f(z)f(z) about z=0z=0. When you are done, substitute in x=\displaystyle\frac{1}{z}x=z1โ€‹ and you will obtain higher order terms in a series for f(x)f(x) that is a good approximation as x\to+\inftyxโ†’+โˆž. It is not quite a Taylor seriesโ€ฆ but it can be useful!

Using this method, determine which of the following is the best approximation for \arctan xarctanx as x\to+\inftyxโ†’+โˆž?

Hint: begin with the limit as x\to+\inftyxโ†’+โˆž and the known Taylor expansion for \arctanarctan about zero.

  • \displaystyle \arctan x = \frac{\pi}{2}-\frac{1}{x}+\frac{1}{3x^3}-\frac{1}{5x^5}+\cdotsarctanx=2ฯ€โ€‹โˆ’x1โ€‹+3x31โ€‹โˆ’5x51โ€‹+โ‹ฏ
  • \displaystyle \arctan x = โ€“ \frac{1}{x}+\frac{1}{3x^3}-\frac{1}{5x^5}+\cdotsarctanx=โˆ’x1โ€‹+3x31โ€‹โˆ’5x51โ€‹+โ‹ฏ
  • \displaystyle \arctan x = \frac{\pi}{2}-\frac{1}{z}+\frac{1}{3z^3}-\frac{1}{5z^5}+\cdotsarctanx=2ฯ€โ€‹โˆ’z1โ€‹+3z31โ€‹โˆ’5z51โ€‹+โ‹ฏ
  • \displaystyle \arctan x =x-\frac{x^3}{3}+\frac{x^5}{5}+\cdotsarctanx=xโˆ’3x3โ€‹+5x5โ€‹+โ‹ฏ
  • \displaystyle \arctan x = \frac{\pi}{2}+x-\frac{x^3}{3}+\frac{x^5}{5}+\cdotsarctanx=2ฯ€โ€‹+xโˆ’3x3โ€‹+5x5โ€‹+โ‹ฏ

Week 4 Quiz Answers

Quiz 1: Core Homework: Limits

Q1. \displaystyle \lim_{x \to 1} \frac{x^2 + x + 1}{x+3} =xโ†’1limโ€‹x+3x2+x+1โ€‹=

  • The limit does not exist.
  • 33
  • \displaystyle \frac{3}{4}43โ€‹
  • 00
  • 22
  • +\infty+โˆž

Q2. \displaystyle \lim_{x \to 0} \frac{\sec x\tan x}{\sin x} =xโ†’0limโ€‹sinxsecxtanxโ€‹=

  • \piฯ€
  • \displaystyle \frac{1}{\cos^2 x}cos2x1โ€‹
  • \displaystyle \frac{\pi}{2}2ฯ€โ€‹
  • 00
  • 11
  • +\infty+โˆž

Q3. \displaystyle \lim_{x \to -2} \frac {x^2-4}{x+2} =xโ†’โˆ’2limโ€‹x+2x2โˆ’4โ€‹=

  • -4โˆ’4
  • 00
  • -2โˆ’2
  • 22
  • 44
  • +\infty+โˆž
  • The limit does not exist.

Q4. \displaystyle \lim_{x \to 0} \frac{x^4 + 3x^2 + 6x}{3x^4 + 5x} =xโ†’0limโ€‹3x4+5xx4+3x2+6xโ€‹=

  • +\infty+โˆž
  • \displaystyle \frac{1}{3}31โ€‹
  • 00
  • \displaystyle \frac{6}{5}56โ€‹
  • The limit does not exist.
  • 11

Q5. \displaystyle \lim_{x \to +\infty} \frac{6x^2 -3x+1}{3x^2+4} =xโ†’+โˆžlimโ€‹3x2+46x2โˆ’3x+1โ€‹=

Hint: If you get stuck, ask yourself which terms in the numerator and denominator are most significant as x\to +\inftyxโ†’+โˆž

  • \displaystyle \frac{1}{3}31โ€‹
  • 00
  • +\infty+โˆž
  • -\inftyโˆ’โˆž
  • \displaystyle \frac{1}{4}41โ€‹
  • 22

Q6. \displaystyle \lim_{x \rightarrow +\infty} \frac {x^2+x+1}{x^4-3x^2+2} =xโ†’+โˆžlimโ€‹x4โˆ’3x2+2x2+x+1โ€‹=

  • 11
  • \displaystyle \frac{1}{2}21โ€‹
  • -\inftyโˆ’โˆž
  • +\infty+โˆž
  • 00
  • \displaystyle -\frac{1}{3}โˆ’31โ€‹

Q7. \displaystyle \lim_{x \to 0} \frac{2 \cos x -2}{3x^2} =xโ†’0limโ€‹3x22cosxโˆ’2โ€‹=

  • \displaystyle -\frac{1}{3}โˆ’31โ€‹
  • \displaystyle -\frac{1}{6}โˆ’61โ€‹
  • The limit does not exist.
  • 00
  • \displaystyle \frac{1}{3}31โ€‹
  • \displaystyle \frac{1}{6}61โ€‹

Q8. \displaystyle \lim_{x \to 0} \frac{\sin^2 x}{\sin 2x} =xโ†’0limโ€‹sin2xsin2xโ€‹=

  • The limit does not exist.
  • \displaystyle \frac{1}{2}21โ€‹
  • 00
  • +\infty+โˆž
  • 11
  • \piฯ€

Q9. \displaystyle \lim_{x \to 0} \frac{e^{x^2}-1}{1-\cos x} =xโ†’0limโ€‹1โˆ’cosxex2โˆ’1โ€‹=

  • 00
  • +\infty+โˆž
  • \displaystyle -\frac{1}{2}โˆ’21โ€‹
  • \displaystyle \frac{1}{2}21โ€‹
  • -2โˆ’2
  • 22

Q10. \displaystyle \lim_{x \to 0} \frac{\ln (x+1)\arctan x}{x^2} =xโ†’0limโ€‹x2ln(x+1)arctanxโ€‹=

  • \displaystyle \frac{1}{3}31โ€‹
  • \displaystyle \frac{1}{2}21โ€‹
  • +\infty+โˆž
  • 00
  • 11
  • -\inftyโˆ’โˆž

Quiz 2: Challenge Homework: Limits

Q1. \displaystyle \lim_{x \to 0} \frac{\ln^2(\cos x)}{2x^4-x^5} =xโ†’0limโ€‹2x4โˆ’x5ln2(cosx)โ€‹=

\displaystyle \frac{1}{8}81โ€‹

  • The limit does not exist.
  • 00
  • \displaystyle \frac{1}{4}41โ€‹
  • +\infty+โˆž
  • 11
  • Q2. \displaystyle \lim_{s \to 0} \frac{e^s s \sin s}{1 โ€“ \cos 2s} =sโ†’0limโ€‹1โˆ’cos2sesssinsโ€‹=
  • 00
  • +\infty+โˆž
  • \displaystyle \frac{1}{2}21โ€‹
  • -\inftyโˆ’โˆž
  • 11
  • \displaystyle \frac{\pi}{2}2ฯ€โ€‹

Q3. \displaystyle \lim_{x \to 0^+} \frac{\sin(\arctan(\sin x))}{\sqrt{x} \sin 3x +x^2+ \arctan 5x} =xโ†’0+limโ€‹xโ€‹sin3x+x2+arctan5xsin(arctan(sinx))โ€‹=

  • Yes, this looks scary. But itโ€™s not that bad if you thinkโ€ฆ
  • \displaystyle \frac{1}{15}151โ€‹
  • 00
  • The limit does not exist.
  • \displaystyle \frac{1}{5}51โ€‹
  • \displaystyle \frac{1}{3}31โ€‹
  • +\infty+โˆž

Q4. \displaystyle \lim_{x \to 0} \frac{\sin x -\cos x -1}{6x e^{2x}} =xโ†’0limโ€‹6xe2xsinxโˆ’cosxโˆ’1โ€‹=

  • The limit does not exist.
  • 33
  • 00
  • 22
  • \displaystyle \frac{1}{6}61โ€‹
  • +\infty+โˆž

Q5. Remember that

\lim_{x \to a} \, f(x) = Lxโ†’alimโ€‹f(x)=L

means the following: for every \epsilon \gt 0ฯต>0 there exists some \delta \gt 0ฮด>0 such that whenever x \neq ax๎€ โ€‹=a is within \deltaฮด of aa, then f(x)f(x) is within \epsilonฯต of LL. We can write these โ€œbeing withinโ€

assertions in terms of inequalities:

\text{โ€œ}x \neq a \text{ is within } \delta \text{ of } a \text{โ€œ} \qquad{\text{is written}}\qquad 0 \lt |x-a| \lt \deltaโ€x๎€ โ€‹=a is within ฮด of aโ€œis written0<โˆฃxโˆ’aโˆฃ<ฮด

and

\text{โ€œ} f(x) \text{ is within } \epsilon \text{ of } L \text{โ€œ} \qquad{\text{is written}}\qquad \left|f(x)-L\right| \lt \epsilonโ€f(x) is within ฯต of Lโ€œis writtenโˆฃf(x)โˆ’Lโˆฃ<ฯต

The strategy for proving the existence of a limit with this definition starts by considering a fixed \epsilon \gt 0ฯต>0, and then trying to find a \deltaฮด (that depends on \epsilonฯต) that works.

Here is a simple example:

\lim_{x \to 1} \, (2x-1) = 1xโ†’1limโ€‹(2xโˆ’1)=1

Fix some \epsilon \gt 0ฯต>0, and suppose \left|(2x-1) โ€“ 1\right| \lt \epsilonโˆฃ(2xโˆ’1)โˆ’1โˆฃ<ฯต. We can then perform the following algebraic manipulations:

\left|(2x-1) โ€“ 1\right| \lt \epsilonโˆฃ(2xโˆ’1)โˆ’1โˆฃ<ฯต

|2x-2| \lt \epsilonโˆฃ2xโˆ’2โˆฃ<ฯต

2|x-1| \lt \epsilon2โˆฃxโˆ’1โˆฃ<ฯต

|x-1| \lt \frac{\epsilon}{2}โˆฃxโˆ’1โˆฃ<2ฯตโ€‹

Hence we can choose \delta = \epsilon/2ฮด=ฯต/2. Notice that we could also choose any smaller value for \deltaฮด and the conclusion would still hold.

Following the same steps as above, prove that

\lim_{x \to 1} \, (3x-2) = 1xโ†’1limโ€‹(3xโˆ’2)=1

For a fixed value of \epsilon \gt 0ฯต>0, what is the maximum value of \deltaฮด that you can choose in this case?

  • \delta = 3\epsilonฮด=3ฯต
  • \delta = \epsilonฮด=ฯต
  • \displaystyle \delta = \frac{\epsilon}{5}ฮด=5ฯตโ€‹
  • \displaystyle \delta = \frac{\epsilon}{3}ฮด=3ฯตโ€‹
  • \delta = 2ฮด=2
  • \delta = 1ฮด=1

Q6. The last problem was relatively straightforward because we were looking at linear functions (that is, polynomials of degree 1). In general, \epsilonฯต-\deltaฮด proofs for non-linear functions can be very difficult. But there are some cases that are pretty doable. Try to prove that

\lim_{x \to 0} \, x^3 = 0xโ†’0limโ€‹x3=0

What is the maximum value of \deltaฮด that you can take for a fixed value of \epsilon \gt 0ฯต>0 ?

  • \delta = 1ฮด=1
  • \displaystyle \delta = \frac{\sqrt[3]{\epsilon}}{3}ฮด=33ฯตโ€‹โ€‹
  • \displaystyle \delta = \frac{\epsilon}{3}ฮด=3ฯตโ€‹
  • \delta = \sqrt{\epsilon}ฮด=ฯตโ€‹
  • \delta = \epsilon^3ฮด=ฯต3
  • \delta = \sqrt[3]{\epsilon}ฮด=3ฯตโ€‹

Quiz 3: Core Homework: lโ€™Hรดpitalโ€™s Rule

Q1. \displaystyle \lim_{x \to 2} \frac{x^3+2x^2-4x-8}{x-2} =xโ†’2limโ€‹xโˆ’2x3+2x2โˆ’4xโˆ’8โ€‹=

  • 1616
  • +\infty+โˆž
  • 33
  • 22
  • 44
  • 00

Q2. \displaystyle \lim_{x \to \pi/3} \frac{1-2\cos x}{\pi -3x} =xโ†’ฯ€/3limโ€‹ฯ€โˆ’3x1โˆ’2cosxโ€‹=

  • 00
  • \displaystyle \pi\sqrt{3}ฯ€3โ€‹
  • \sqrt{3}3โ€‹
  • \displaystyle \frac{\pi}{\sqrt{3}}3โ€‹ฯ€โ€‹
  • \displaystyle \frac{\pi}{3}3ฯ€โ€‹
  • \displaystyle -\frac{1}{\sqrt{3}}โˆ’3โ€‹1โ€‹

Q3. \displaystyle \lim_{x \to \pi} \frac{4 \sin x \cos x}{\pi โ€“ x} =xโ†’ฯ€limโ€‹ฯ€โˆ’x4sinxcosxโ€‹=

  • -4โˆ’4
  • 44
  • +\infty+โˆž
  • 00
  • The limit does not exist.
  • -\inftyโˆ’โˆž

Q4. \displaystyle \lim_{x \to 9} \frac{2x-18}{\sqrt{x}-3} =xโ†’9limโ€‹xโ€‹โˆ’32xโˆ’18โ€‹=

  • 22
  • 44
  • 1212
  • 00
  • 66
  • +\infty+โˆž

Q5. \displaystyle \lim_{x \to 0} \frac{e^x โ€“ \sin x -1}{x^2-x^3} =xโ†’0limโ€‹x2โˆ’x3exโˆ’sinxโˆ’1โ€‹=

  • 33
  • \displaystyle \frac{1}{3}31โ€‹
  • +\infty+โˆž
  • \displaystyle \frac{1}{2}21โ€‹
  • 00
  • \displaystyle -\frac{1}{6}โˆ’61โ€‹

Q6. \displaystyle \lim_{x \to 1} \frac{\cos (\pi x/2)}{1 โ€“ \sqrt{x}} =xโ†’1limโ€‹1โˆ’xโ€‹cos(ฯ€x/2)โ€‹=

  • -\piโˆ’ฯ€
  • 00
  • 11
  • +\infty+โˆž
  • \displaystyle\frac{\pi}{2}2ฯ€โ€‹
  • \piฯ€

Quiz 4: Challenge Homework: lโ€™Hรดpitalโ€™s Rule

Q1. \displaystyle \lim_{x \to 4} \frac{3 โ€“ \sqrt{5+x}}{1 โ€“ \sqrt{5-x}} =xโ†’4limโ€‹1โˆ’5โˆ’xโ€‹3โˆ’5+xโ€‹โ€‹=

  • \displaystyle -\frac{1}{5}โˆ’51โ€‹
  • \displaystyle -\frac{1}{3}โˆ’31โ€‹
  • \displaystyle \frac{1}{5}51โ€‹
  • -3โˆ’3
  • \displaystyle \frac{1}{3}31โ€‹
  • 33

Q2. \displaystyle \lim_{x\rightarrow 0} \left(\frac{1}{x}-\frac{1}{\ln (x+1)}\right) =xโ†’0limโ€‹(x1โ€‹โˆ’ln(x+1)1โ€‹)=

  • 00
  • -1โˆ’1
  • \displaystyle \frac{1}{2}21โ€‹
  • \displaystyle -\frac{1}{2}โˆ’21โ€‹
  • +\infty+โˆž
  • \displaystyle \frac{1}{e}e1โ€‹

Q3. \displaystyle \lim_{x \to \pi/2} \frac{\sin x \cos x}{e^x\cos 3x} =xโ†’ฯ€/2limโ€‹excos3xsinxcosxโ€‹=

Hint: ask yourself: which factors vanish at x=\pi/2x=ฯ€/2 and which ones do not?

  • \displaystyle \frac{e^{\pi/2}}{3}3eฯ€/2โ€‹
  • +\infty+โˆž
  • e^{-1}eโˆ’1
  • e^{-\pi/2}eโˆ’ฯ€/2
  • \displaystyle -\frac{e^{-\pi/2}}{3}โˆ’3eโˆ’ฯ€/2โ€‹
  • -e^{-\pi/2}โˆ’eโˆ’ฯ€/2

Q4. \displaystyle \lim_{x \rightarrow +\infty} \frac {\ln x}{e^x} =xโ†’+โˆžlimโ€‹exlnxโ€‹=

  • \displaystyle \frac{1}{e}e1โ€‹
  • 00
  • ee
  • The limit does not exist.
  • -\inftyโˆ’โˆž
  • +\infty+โˆž

Q5. \displaystyle \lim_{x \to +\infty} x \ln\left(1+ \frac{3}{x}\right) =xโ†’+โˆžlimโ€‹xln(1+x3โ€‹)=

Hint: lโ€™Hรดpitalโ€™s rule is fantastic, but it is not always the best approach!

  • 44
  • 11
  • The limit does not exist.
  • 33
  • +\infty+โˆž
  • 00

Quiz 5: Core Homework: Orders of Growth

Q1. \displaystyle \lim_{x \to +\infty} \frac{e^{2x}}{x^3 + 3x^2 +4} =xโ†’+โˆžlimโ€‹x3+3x2+4e2xโ€‹=

Hint: If you understood the lecture well enough, you donโ€™t need to do any work to know the answerโ€ฆ

-\inftyโˆ’โˆž

e^2e2

+\infty+โˆž

\displaystyle \frac{1}{4}41โ€‹

00

\displaystyle \frac{1}{3}31โ€‹

Q2. \displaystyle \lim_{x \rightarrow +\infty} \frac{e^{3x}}{e^{x^2}} =xโ†’+โˆžlimโ€‹ex2e3xโ€‹=

00

+\infty+โˆž

\displaystyle \frac{3}{2}23โ€‹

The limit does not exist.

\displaystyle \frac{1}{3}31โ€‹

e^{1/3}e1/3

Q3. \displaystyle \lim_{x \rightarrow +\infty} \frac {e^x (x-1)!}{x!} =xโ†’+โˆžlimโ€‹x!ex(xโˆ’1)!โ€‹=

  • +\infty+โˆž
  • 00
  • 11
  • e^xex

ee

Q4. \displaystyle \lim_{x \to +\infty} \frac{2^x + 1}{(x+1)!} =xโ†’+โˆžlimโ€‹(x+1)!2x+1โ€‹=

  • 11
  • \displaystyle \frac{1}{2}21โ€‹
  • 00
  • +\infty+โˆž
  • 22
  • -\inftyโˆ’โˆž

Q5. Evaluate the following limit, where nn is a positive integer: \displaystyle \lim_{x \to +\infty} \frac{(3 \ln x)^n}{(2x)^n}xโ†’+โˆžlimโ€‹(2x)n(3lnx)nโ€‹.

  • \displaystyle \frac{3^n}{2^n}2n3nโ€‹
  • +\infty+โˆž
  • 22
  • 33
  • 00
  • \displaystyle \frac{3}{2}23โ€‹

Q6. Which of the following are in O(x^2)O(x2) as x\to 0xโ†’0? Select all that apply.

Hint: remember O(x^2)O(x2) consists of those functions which go to zero at least as quickly as Cx^2Cx2 for some constant CC. That means 0\leq |f(x)|\lt Cx^20โ‰คโˆฃf(x)โˆฃ<Cx2 for some CC as x\to 0xโ†’0.

  • 5x^2+3x^45x2+3x4
  • \sin x^2sinx2
  • \ln(1+x)ln(1+x)
  • \sqrt{x+3x^4}x+3x4โ€‹
  • \sinh xsinhx
  • 5ร—5x

Q7. Which of the following are in O(x^2)O(x2) as x \to +\inftyxโ†’+โˆž? Select all that apply.

Hint: recall O(x^2)O(x2) consists of those functions that are \leq C x^2โ‰คCx2 for some constant CC as x \to +\inftyxโ†’+โˆž.

  • 5\sqrt{x^2+x-1}5x2+xโˆ’1โ€‹
  • e^{\sqrt{x}}exโ€‹
  • \displaystyle \sqrt{x^5-2x^3+1}x5โˆ’2x3+1โ€‹
  • \ln(x^{10}+1)ln(x10+1)
  • x^3-5x^2-11x+4x3โˆ’5x2โˆ’11x+4
  • \arctan x^2arctanx

Q8. Which of the following statements are true? Select all that apply.

  • O(1) + O(x) = O(x)O(1)+O(x)=O(x) as x \to +\inftyxโ†’+โˆž
  • O(x) + O(e^x) = O(e^x)O(x)+O(ex)=O(ex) as x \to +\inftyxโ†’+โˆž
  • O(1) + O(x) = O(x)O(1)+O(x)=O(x) as x \to 0xโ†’0
  • O(1) + O(x) = O(1)O(1)+O(x)=O(1) as x \to 0xโ†’0
  • O(1) + O(x) = O(1)O(1)+O(x)=O(1) as x \to +\inftyxโ†’+โˆž
  • O(x) + O(e^x) = O(x)O(x)+O(ex)=O(x) as x \to +\inftyxโ†’+โˆž

Q9. Simplify the following asymptotic expression:

f(x) = \left( x โ€“ x^2 + O(x^3)\right)\cdot\left(1+2x + O(x^3)\right)f(x)=(xโˆ’x2+O(x3))โ‹…(1+2x+O(x3))

(here, the big-O means as x\to 0xโ†’0)

Hint: do not be intimidated by the notation; simply pretend that O(x^3)O(x3) is a cubic monomial in xx and use basic multiplication of polynomials.

  • f(x) = 1+3x โ€“ x^2 + O(x^3)f(x)=1+3xโˆ’x2+O(x3)
  • f(x) = x + x^2 -2x^3 + O(x^3)f(x)=x+x2โˆ’2x3+O(x3)
  • f(x) = x + x^2 + O(x^3)f(x)=x+x2+O(x3)
  • f(x) = x + x^2 -2x^3 + O(x^6)f(x)=x+x2โˆ’2x3+O(x6)
  • f(x) = x + x^2 + O(x^4)f(x)=x+x2+O(x4)
  • f(x) = 1 + x + x^2 + O(x^3)f(x)=1+x+x2+O(x3)

Q10. Simplify the following asymptotic expression:

f(x) = \left( x^3 + 2x^2 + O(x)\right)\cdot\left(1+\frac{1}{x}+O\left(\frac{1}{x^2}\right)\right)f(x)=(x3+2x2+O(x))โ‹…(1+x1โ€‹+O(x21โ€‹))

(here, the big-O means as x \to +\inftyxโ†’+โˆž)

Hint: do not be intimidated by the notation! Pretend that O(x)O(x) is of the form CxCx for some CC and likewise with O(1/x^2)O(1/x2). Multiply just like these are polynomials, then simplify at the end.

  • \displaystyle f(x) = x^3 + 2x^2 + O(x)f(x)=x3+2x2+O(x)
  • \displaystyle f(x) = x^3 + 3x^2 + 2x + O(\frac{1}{x})f(x)=x3+3x2+2x+O(x1โ€‹)
  • \displaystyle f(x) = x^3 + 3x^2 + 2x + O(x) + O(1) + O(\frac{1}{x})f(x)=x3+3x2+2x+O(x)+O(1)+O(x1โ€‹)
  • \displaystyle f(x) = x^3 + 3x^2 + O(x)f(x)=x3+3x2+O(x)
  • \displaystyle f(x) = x^3 + 3x^2 + 2x + O(x)f(x)=x3+3x2+2x+O(x)

Quiz 6: Challenge Homework: Orders of Growth

Q1. There are numerous rules for big-O manipulations, including:

O(f(x)) + O(g(x)) = O(f(x) + g(x))O(f(x))+O(g(x))=O(f(x)+g(x))

O(f(x))\cdot O(g(x)) = O(f(x)\cdot g(x))O(f(x))โ‹…O(g(x))=O(f(x)โ‹…g(x))

In the above, ff and gg are positive (or take absolute values) and x\to+\inftyxโ†’+โˆž.

Using these rules and some algebra, which of the following is the best answer to what is:

  • O\left(\frac{5}{x}\right) + O\left(\frac{\ln(x^2)}{4x}\right)O(x5โ€‹)+O(4xln(x2)โ€‹)
  • \displaystyle O\left(\frac{\ln(x^2)}{x}\right)O(xln(x2)โ€‹)
  • \displaystyle O\left(\frac{\ln x}{x}\right)O(xlnxโ€‹)
  • \displaystyle O\left(\frac{\ln x}{2x}\right)O(2xlnxโ€‹)
  • \displaystyle O\left(\frac{5}{x}\right)O(x5โ€‹)
  • \displaystyle O\left(\frac{20+\ln x}{4x}\right)O(4x20+lnxโ€‹)

Q2. [very hard] For which constants \lambdaฮป is it true that any polynomial P(x)P(x) is in

O\left(e^{(\ln x)^{\lambda}}\right)O(e(lnx)ฮป)

as x\to+\inftyxโ†’+โˆž?

-\infty\lt \lambda \lt \inftyโˆ’โˆž<ฮป<โˆž

No value of \lambdaฮป satisfies this.

  • \lambda\gt 0ฮป>0
  • \lambda\gt 1ฮป>1
  • \lambda\ge 1ฮปโ‰ฅ1
  • \lambda\ge 0ฮปโ‰ฅ0

Q3. Here are a few more tricky rules for simplifying big-O expressions: these hold in the limit where g(x)g(x) is a positive function going to zero.

\frac{1}{1+O(g(x))} = 1 + O(g(x))1+O(g(x))1โ€‹=1+O(g(x))

\left(1+O(g(x))\right)^\alpha = 1 + O(g(x))(1+O(g(x)))ฮฑ=1+O(g(x))

\ln\left(1+O(g(x))\right) = O(g(x))ln(1+O(g(x)))=O(g(x))

e^{O(g(x))} = 1 + O(g(x))eO(g(x))=1+O(g(x))

Can you see why these formulae make sense? Using these, tell me which of the following are in O(x)O(x) as x\to 0xโ†’0. Select all that apply.

(Iโ€™ve been a little sloppy about using absolute values and enforcing that x\to 0^+xโ†’0+ is a limit from the right, but donโ€™t worry about that too muchโ€ฆ)

  • \sqrt{1+\arctan x}1+arctanxโ€‹
  • e^{\sin(x)\cos(x)}esin(x)cos(x)
  • \displaystyle \ln\left(1+\frac{1-\cos x}{1-e^x}\right)ln(1+1โˆ’ex1โˆ’cosxโ€‹)
  • \displaystyle \frac{x^2}{1+\sin x}1+sinxx2โ€‹

Q4. The following problem comes from page 26 of the on-line notes of Prof. Hildebrand at the University of Illinois. Which of the following is the most accurate asymptotic expansion of

\ln\left(\ln x \, + \, \ln(\ln x)\right)ln(lnx+ln(lnx))

in the limit as x\to+\inftyxโ†’+โˆž?

Hint: Taylor expansions will not help you in this limit.

Hint^\mathbf{2}2: this is a devilish problem. If you are just here for the calculus, donโ€™t bother with this problem. This is one for an expert-in-the-makingโ€ฆ

  • \displaystyle \ln(\ln x) + \frac{\ln(\ln x)}{\ln x} + O\left(\frac{\ln(\ln x)}{\ln x}\right)^2ln(lnx)+lnxln(lnx)โ€‹+O(lnxln(lnx)โ€‹)2
  • \displaystyle \ln(x + \ln x) + O\left(\frac{\ln(\ln x)}{\ln x}\right)ln(x+lnx)+O(lnxln(lnx)โ€‹)
  • \displaystyle \ln(x + \ln x) + O\left(\ln(\ln x)\right)ln(x+lnx)+O(ln(lnx))
  • \displaystyle \ln(\ln x) + \ln(\ln(\ln x)) + O\left(\frac{\ln(\ln(\ln x))}{\ln x}\right)ln(lnx)+ln(ln(lnx))+O(lnxln(ln(lnx))โ€‹)
  • \displaystyle \ln(\ln x) + O\left(\frac{\ln(\ln x)}{\ln x}\right)ln(lnx)+O(lnxln(lnx)โ€‹)

Quiz 7: Chapter 1: Functions โ€“ Exam

Q1. What is the domain of the function f(x) =\sqrt{\ln x}f(x)=lnxโ€‹ ?

  • \displaystyle (0, 1](0,1]
  • \displaystyle [0, \pi)[0,ฯ€)
  • \displaystyle [e,\infty)[e,โˆž)
  • \displaystyle [1,\infty)[1,โˆž)
  • \displaystyle (-\infty, \infty)(โˆ’โˆž,โˆž)

Q2. Which of the following is the Taylor series of \displaystyle \ln \frac{1}{1-x}ln1โˆ’x1โ€‹ about x=0x=0 up to and including the terms of order three?

  • \displaystyle \ln \frac{1}{1-x} = x+\frac{x^2}{2} + O(x^4)ln1โˆ’x1โ€‹=x+2x2โ€‹+O(x4)
  • \displaystyle \ln \frac{1}{1-x} = x+\frac{1}{2}x^2+ \frac{1}{3}x^3 + O(x^4)ln1โˆ’x1โ€‹=x+21โ€‹x2+31โ€‹x3+O(x4)
  • \displaystyle \ln \frac{1}{1-x} = x-\frac{1}{2}x^2+\frac{1}{6}x^3 + O(x^4)ln1โˆ’x1โ€‹=xโˆ’21โ€‹x2+61โ€‹x3+O(x4)
  • \displaystyle \ln \frac{1}{1-x} = 1+ x- \frac{1}{2} x^2+ \frac{1}{6} x^3 + O(x^4)ln1โˆ’x1โ€‹=1+xโˆ’21โ€‹x2+61โ€‹x3+O(x4)
  • \displaystyle \ln \frac{1}{1-x} = x โ€“ \frac{1}{2}x^2+ \frac{1}{3}x^3 + O(x^4)ln1โˆ’x1โ€‹=xโˆ’21โ€‹x2+31โ€‹x3+O(x4)
  • \displaystyle \ln \frac{1}{1-x} = x-x^2+x^3 + O(x^4)ln1โˆ’x1โ€‹=xโˆ’x2+x3+O(x4)
  • \displaystyle \ln \frac{1}{1-x} = 1-x+2x^2-3x^3 + O(x^4)ln1โˆ’x1โ€‹=1โˆ’x+2x2โˆ’3x3+O(x4)
  • \displaystyle \ln \frac{1}{1-x} = 1- \frac{1}{2} x^2+ O(x^4)ln1โˆ’x1โ€‹=1โˆ’21โ€‹x2+O(x4)

Q3. Using your knowledge of Taylor series, find the sixth derivative f^{(6)}(0)f(6)(0) of f(x)=e^{-x^2}f(x)=eโˆ’x2 evaluated at x=0x=0.

  • \displaystyle -\frac{1}{6}โˆ’61โ€‹
  • \displaystyle -120 โˆ’120
  • \displaystyle 6!6!
  • \displaystyle 00
  • \displaystyle \frac{1}{6!}6!1โ€‹
  • \displaystyle 66
  • \displaystyle 55
  • \displaystyle \frac{5}{6!}6!5โ€‹

Q3. Recall that the Taylor series for \arctanarctan is

\arctan x = \sum_{k=0}^\infty(-1)^k\frac{x^{2k+1}}{2k+1}arctanx=k=0โˆ‘โˆžโ€‹(โˆ’1)k2k+1x2k+1โ€‹

for |x| < 1โˆฃxโˆฃ<1. Using this, compute \displaystyle \lim_{x \to 0} \frac{\arctan x}{x^3+7x}xโ†’0limโ€‹x3+7xarctanxโ€‹.

  • \displaystyle \frac{1}{7}71โ€‹
  • \displaystyle -\inftyโˆ’โˆž
  • \displaystyle 11
  • \displaystyle \frac{8}{7}78โ€‹
  • \displaystyle 00
  • \displaystyle -\frac{1}{7}โˆ’71โ€‹
  • \displaystyle -\frac{8}{7}โˆ’78โ€‹
  • \displaystyle 77

Q5. \displaystyle \lim_{x \to 0} \frac{\cos 3x- \cos 5x}{x^2} =xโ†’0limโ€‹x2cos3xโˆ’cos5xโ€‹=

+\infty+โˆž

  • 1515
  • 00
  • 44
  • 88
  • 22

Q6. Determine which value is approximated by

\displaystyle 1+\sqrt{2}\pi+\pi^2+\frac{(\sqrt{2}\pi)^3}{3!}+\frac{(\sqrt{2}\pi)^4}{4!}+\frac{(\sqrt{2}\pi)^5}{5!} + \text{H.O.T.}1+2โ€‹ฯ€+ฯ€2+3!(2โ€‹ฯ€)3โ€‹+4!(2โ€‹ฯ€)4โ€‹+5!(2โ€‹ฯ€)5โ€‹+H.O.T.

  • \displaystyle \frac{\sqrt{2}}{1-\pi}1โˆ’ฯ€2โ€‹โ€‹
  • \displaystyle \frac{1}{1-\pi \sqrt{2}}1โˆ’ฯ€2โ€‹1โ€‹
  • \displaystyle e^{\sqrt{2\pi}}e2ฯ€โ€‹
  • \displaystyle \pi e^{\sqrt{2}}ฯ€e2โ€‹
  • \displaystyle \arctan \sqrt 2 \piarctan2โ€‹ฯ€
  • \displaystyle e^\pi\ln(1+\sqrt{2})eฯ€ln(1+2โ€‹)
  • \displaystyle e^{\sqrt{2}\pi}e2โ€‹ฯ€
  • \displaystyle 1+\pi \ln \sqrt{2}1+ฯ€ln2โ€‹

Q7. Which of the following expressions describes the sum

-x+\frac{\sqrt{2}}{4}x^2-\frac{\sqrt{3}}{9}x^3+\frac{2}{16}x^4 + \text{H.O.T.}โˆ’x+42โ€‹โ€‹x2โˆ’93โ€‹โ€‹x3+162โ€‹x4+H.O.T.

Choose all that apply.

  • \displaystyle \sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{n^2}x^nn=1โˆ‘โˆžโ€‹(โˆ’1)nn2nโ€‹โ€‹xn
  • \displaystyle \sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{2n}}{n^2}x^nn=1โˆ‘โˆžโ€‹(โˆ’1)nn22nโ€‹โ€‹xn
  • \displaystyle \sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{n}(x-1)^nn=1โˆ‘โˆžโ€‹(โˆ’1)nnnโ€‹โ€‹(xโˆ’1)n
  • \displaystyle \sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{2n}}{n}x^nn=1โˆ‘โˆžโ€‹(โˆ’1)nn2nโ€‹โ€‹xn
  • \displaystyle \sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{2}\sqrt{3}^{n-1}}{n^2}x^nn=1โˆ‘โˆžโ€‹(โˆ’1)nn22โ€‹3โ€‹nโˆ’1โ€‹xn
  • \displaystyle \sum_{n=0}^{\infty} (-1)^{n+1} \frac{\sqrt{n+1}}{(n+1)^2}x^{n+1}n=0โˆ‘โˆžโ€‹(โˆ’1)n+1(n+1)2n+1โ€‹โ€‹xn+1
  • \displaystyle \sum_{n=1}^{\infty} (-1)^n \sqrt{\frac{n}{n^2}}x^nn=1โˆ‘โˆžโ€‹(โˆ’1)nn2nโ€‹โ€‹xn
  • \displaystyle \sum_{n=0}^{\infty} (-1)^{n-1} \frac{\sqrt{2(n+1)}}{n^2}x^nn=0โˆ‘โˆžโ€‹(โˆ’1)nโˆ’1n22(n+1)โ€‹โ€‹xn

Q8. Use the geometric series to evaluate the sum

\sum_{k=0}^{\infty} 3^{k+1}x^kk=0โˆ‘โˆžโ€‹3k+1xk

Donโ€™t forget to indicate what restrictions there are on xxโ€ฆ

  • \displaystyle \sum_{k=0}^{\infty} 3^{k+1}x^k=\frac{3}{1-3x}k=0โˆ‘โˆžโ€‹3k+1xk=1โˆ’3x3โ€‹ on |x| < 3โˆฃxโˆฃ<3
  • \displaystyle \sum_{k=0}^{\infty} 3^{k+1}x^k=\frac{3}{1-x}k=0โˆ‘โˆžโ€‹3k+1xk=1โˆ’x3โ€‹ on \displaystyle |x| < \frac{1}{3}โˆฃxโˆฃ<31โ€‹
  • \displaystyle \sum_{k=0}^{\infty} 3^{k+1}x^k=\inftyk=0โˆ‘โˆžโ€‹3k+1xk=โˆž on |x| < 1โˆฃxโˆฃ<1
  • \displaystyle \sum_{k=0}^{\infty} 3^{k+1}x^k=\frac{1}{1-3x}k=0โˆ‘โˆžโ€‹3k+1xk=1โˆ’3x1โ€‹ on |x| < 1โˆฃxโˆฃ<1
  • \displaystyle \sum_{k=0}^{\infty} 3^{k+1}x^k=3x k=0โˆ‘โˆžโ€‹3k+1xk=3x on |x| < 3โˆฃxโˆฃ<3
  • \displaystyle \sum_{k=0}^{\infty} 3^{k+1}x^k=\frac{3}{1-3x}k=0โˆ‘โˆžโ€‹3k+1xk=1โˆ’3x3โ€‹ on \displaystyle |x| < \frac{1}{3}โˆฃxโˆฃ<31โ€‹
  • \displaystyle \sum_{k=0}^{\infty} 3^{k+1}x^k=\frac{3}{1+3x}k=0โˆ‘โˆžโ€‹3k+1xk=1+3x3โ€‹ on \mathbb{R} = (-\infty, +\infty)R=(โˆ’โˆž,+โˆž)
  • \displaystyle \sum_{k=0}^{\infty} 3^{k+1}x^k=3e^xk=0โˆ‘โˆžโ€‹3k+1xk=3ex on |x| < 1โˆฃxโˆฃ<1

Q9. Which of the following is the Taylor series expansion about \displaystyle x=2x=2 of

x^3-2x^2+3x-4x3โˆ’2x2+3xโˆ’4

  • 2 + 7(x-2) + 8(x-2)^2 + 6(x-2)^3 + O\big( (x-2)^4 \big)2+7(xโˆ’2)+8(xโˆ’2)2+6(xโˆ’2)3+O((xโˆ’2)4)
  • 2 + 7(x-2) + 4(x-2)^2 + (x-2)^3 + O\big( (x-2)^4 \big)2+7(xโˆ’2)+4(xโˆ’2)2+(xโˆ’2)3+O((xโˆ’2)4)
  • -4+3(x+2)-2(x+2)^2+(x+2)^3 + O\big( (x+2)^4 \big)โˆ’4+3(x+2)โˆ’2(x+2)2+(x+2)3+O((x+2)4)
  • -4+3x-2x^2+x^3 + O(x^4)โˆ’4+3xโˆ’2x2+x3+O(x4)
  • -4+3(x-2)-2(x-2)^2+(x-2)^3 + O\big( (x-2)^4 \big)โˆ’4+3(xโˆ’2)โˆ’2(xโˆ’2)2+(xโˆ’2)3+O((xโˆ’2)4)

Q10. Exactly two of the statements below are correct. Select the two correct statements.

  • \cosh 2xcosh2x is in O(x^n)O(xn) for all n \geq 0nโ‰ฅ0 as x \to +\inftyxโ†’+โˆž.
  • \sqrt{16x^4-2}16x4โˆ’2โ€‹ is in O(x^2)O(x2) as x \to +\inftyxโ†’+โˆž.
  • e^{x^2}ex2 is in O(x^2)O(x2) as x \to +\inftyxโ†’+โˆž.
  • 7 \sqrt{x}7xโ€‹ is in O(x^4)O(x4) as x \to 0xโ†’0.
  • 3x^4-143x4โˆ’14 is in O(x^2)O(x2) as x \to +\inftyxโ†’+โˆž.
  • \ln (1+x+x^2)ln(1+x+x2) is in O(x^n)O(xn) for all n \geq 1nโ‰ฅ1 as x \to +\inftyxโ†’+โˆž.
  • e^xex is in O(\ln x)O(lnx) as x \to +\inftyxโ†’+โˆž.
  • 7x^37x3 is in O(x^4)O(x4) as x \to 0xโ†’0.

Conclusion

Hopefully, this article will be useful for you to find all theย Week, final assessment, and Peer Graded Assessment Answers of Calculus: Single Variable Part 1 – Functions Quiz of Courseraย and grab some premium knowledge with less effort. If this article really helped you in any way then make sure to share it with your friends on social media and let them also know about this amazing training. You can also check out our other courseย Answers.ย So, be with us guys we will share a lot more free courses and their exam/quiz solutions also, and follow ourย Techno-RJย Blogย for more updates.

1,387 thoughts on “Calculus: Single Variable Part 1 – Functions Coursera Quiz Answers 2022 | All Weeks Assessment Answers [๐Ÿ’ฏCorrect Answer]”

  1. I have been surfing online more than three hours today, but I by no means found any attention-grabbing article like yours. It is lovely worth enough for me. In my opinion, if all site owners and bloggers made good content as you probably did, the web will likely be a lot more useful than ever before. “Nothing will come of nothing.” by William Shakespeare.

    Reply
  2. I just couldn’t depart your website prior to suggesting that I really loved the usual info an individual provide to your visitors? Is going to be again often to check up on new posts.

    Reply
  3. My spouse and I stumbled over here from a different web address and thought I might check things out. I like what I see so now i am following you. Look forward to finding out about your web page repeatedly.

    Reply
  4. I would like to thnkx for the efforts you have put in writing this blog. I am hoping the same high-grade blog post from you in the upcoming as well. In fact your creative writing abilities has inspired me to get my own blog now. Really the blogging is spreading its wings quickly. Your write up is a good example of it.

    Reply
  5. Can I simply say what a reduction to seek out someone who actually knows what theyre talking about on the internet. You definitely know find out how to deliver a difficulty to gentle and make it important. More individuals have to read this and understand this aspect of the story. I cant believe youre not more well-liked because you undoubtedly have the gift.

    Reply
    • Sorry, but I don’t see where the answers are!! I mean, the question appears for me with options only!! Here are the answers pleaseeee๐Ÿ˜ญ

      Reply
  6. Hey there! Quick question that’s entirely off topic. Do you know how to make your site mobile friendly? My website looks weird when browsing from my apple iphone. I’m trying to find a template or plugin that might be able to fix this problem. If you have any suggestions, please share. Appreciate it!

    Reply
  7. Hi, Neat post. There’s an issue together with your site in internet explorer, would test thisK IE nonetheless is the market leader and a big component to people will miss your fantastic writing because of this problem.

    Reply
  8. whoah this blog is wonderful i love reading your posts. Keep up the great work! You know, many people are looking around for this information, you can help them greatly.

    Reply
  9. Wow that was strange. I just wrote an really long comment but after I clicked submit my comment didn’t show up. Grrrr… well I’m not writing all that over again. Anyways, just wanted to say superb blog!

    Reply
  10. Thanks for every other great article. Where else could anyone get that type of information in such a perfect method of writing? I have a presentation next week, and I’m at the search for such info.

    Reply
  11. Sorry, but I don’t see where the answers are!! I mean, the question appears for me with options only!! Where are the answers pleaseeee๐Ÿ˜ญ

    Reply
  12. Hi, I think your site might be having browser compatibility issues. When I look at your website in Safari, it looks fine but when opening in Internet Explorer, it has some overlapping. I just wanted to give you a quick heads up! Other then that, fantastic blog!

    Reply
  13. jenna haze porn pics call of duty modern warfare porn my little mermaid porn manga hentai porn free hd porn full movies gender transformation porn comic retarded porn lilo and stitch porn kayla kayden porn videos freehomemade porn jasmine skye porn porn fail videos free mature woman porn videos ryan driller porn george glass porn [url=https://24str.ru/ ]alam wernick gay porn [/url] gay penis porn sophia knight porn urethra sounding porn family blackmail porn thailand porn hd fnaf porn comics turk liseli porn free chubby girl porn videos word porn quotes small hentai porn what does pov stand for in porn tinny porn magic spell porn teacher porn movies 3d anaglyphic porn [url=https://altairosha.ru/ ]meowth porn [/url] sexy mom and son porn reddit ir porn chad alva porn lazy town porn pregnant black girl porn villainous dementia porn borderlands 2 porn comics iranian porn clip nasty black girl porn destiny day porn the magicians porn porn trick alexis skyy porn shemale porn movies vr porn review [url=https://buyabilify.ru/ ]feminist porn videos [/url] best pov porn site artist porn behind the scenes porn sex goblin girl porn mad moxxi porn gif porn gang bang gay shota comic porn mature porn hub crazy positions porn porn books sexy porn tubes yelena porn planet sheen porn porn star name list fog porn [url=https://czds.ru/ ]sicflics porn [/url] bella thorne nude porn free big booty porn movies booty clapping porn free porn mexican https www free porn com mia khalifa free porn sascha porn guess who porn sophia porn alessandra jane porn gabrielle anwar porn teenie teen porn cartoon porn family guy jab cartoon porn ripped gay porn [url=https://altairosha.ru/ ]fish net porn [/url] gay pee porn japanese porn gameshow japantiny porn isobel wren porn cerdas porn japanese wives porn leigh felten porn erotic hd porn new japanese porn the story of o porn png porn italian anal porn resident evil 2 porn free interracial teen porn ms deja porn mika tan porn lorde porn multiple penetration porn joi porn vids teen abused porn iphone porn sitesi sf porn long red hair porn mother daughter lesbian porn warframe porn lotus gay crying porn fairy tail mavis porn trans porn hd prison gangbang porn rough black porn prettiest porn actress hottest japanese porn stars meth head porn rae hart porn e porn fortnite llama porn young arab porn sexy porn compilation dancer porn ginger lynn porn videos daddy caption porn bdsm cartoon porn mom son kitchen porn adhd and porn logan moore porn cartoon squirt porn xxx women porn female worgen porn league of legends kda porn brittney jones porn trance porn outdoor masturbation porn pole porn anastasia porn club sex porn

    Reply
  14. Hello! I know this is kinda off topic but I’d figured I’d ask.
    Would you be interested in exchanging links or maybe
    guest authoring a blog post or vice-versa? My website covers a lot of the same subjects as yours and
    I feel we could greatly benefit from each other.

    If you might be interested feel free to send me an e-mail.
    I look forward to hearing from you! Excellent blog by the way!

    Reply
  15. My programmer is trying to persuade me to move to .net from PHP.
    I have always disliked the idea because of the expenses.
    But he’s tryiong none the less. I’ve been using WordPress on several websites for about a year and am
    nervous about switching to another platform. I have
    heard great things about blogengine.net. Is there a way I can transfer all my wordpress content into it?
    Any help would be greatly appreciated!

    Reply
  16. Hi, i feel that i noticed you visited my weblog so i got here to โ€œreturn the favorโ€.I’m trying to in finding things to improve my website!I suppose its good enough to use a few of your ideas!!

    Reply
  17. Boostaro increases blood flow to the reproductive organs, leading to stronger and more vibrant erections. It provides a powerful boost that can make you feel like you’ve unlocked the secret to firm erections

    Reply
  18. Puravive introduced an innovative approach to weight loss and management that set it apart from other supplements. It enhances the production and storage of brown fat in the body, a stark contrast to the unhealthy white fat that contributes to obesity.

    Reply
  19. Neotonics is an essential probiotic supplement that works to support the microbiome in the gut and also works as an anti-aging formula. The formula targets the cause of the aging of the skin.

    Reply
  20. GlucoBerry is one of the biggest all-natural dietary and biggest scientific breakthrough formulas ever in the health industry today. This is all because of its amazing high-quality cutting-edge formula that helps treat high blood sugar levels very naturally and effectively.

    Reply
  21. Nervogen Pro, A Cutting-Edge Supplement Dedicated To Enhancing Nerve Health And Providing Natural Relief From Discomfort. Our Mission Is To Empower You To Lead A Life Free From The Limitations Of Nerve-Related Challenges. With A Focus On Premium Ingredients And Scientific Expertise.

    Reply
  22. Cortexi is an effective hearing health support formula that has gained positive user feedback for its ability to improve hearing ability and memory. This supplement contains natural ingredients and has undergone evaluation to ensure its efficacy and safety. Manufactured in an FDA-registered and GMP-certified facility, Cortexi promotes healthy hearing, enhances mental acuity, and sharpens memory.

    Reply
  23. Unlock the incredible potential of Puravive! Supercharge your metabolism and incinerate calories like never before with our unique fusion of 8 exotic components. Bid farewell to those stubborn pounds and welcome a reinvigorated metabolism and boundless vitality. Grab your bottle today and seize this golden opportunity! https://puravivebuynow.us/

    Reply
  24. EndoPump is a dietary supplement for men’s health. This supplement is said to improve the strength and stamina required by your body to perform various physical tasks. Because the supplement addresses issues associated with aging, it also provides support for a variety of other age-related issues that may affect the body. https://endopumpbuynow.us/

    Reply
  25. Glucofort Blood Sugar Support is an all-natural dietary formula that works to support healthy blood sugar levels. It also supports glucose metabolism. According to the manufacturer, this supplement can help users keep their blood sugar levels healthy and within a normal range with herbs, vitamins, plant extracts, and other natural ingredients. https://glucofortbuynow.us/

    Reply
  26. Kerassentials are natural skin care products with ingredients such as vitamins and plants that help support good health and prevent the appearance of aging skin. Theyโ€™re also 100% natural and safe to use. The manufacturer states that the product has no negative side effects and is safe to take on a daily basis. Kerassentials is a convenient, easy-to-use formula. https://kerassentialsbuynow.us/

    Reply
  27. There are definitely loads of details like that to take into consideration. That could be a great level to deliver up. I supply the thoughts above as common inspiration however clearly there are questions like the one you deliver up where the most important thing can be working in sincere good faith. I don?t know if finest practices have emerged round issues like that, however I’m certain that your job is clearly identified as a fair game. Both girls and boys really feel the impression of only a momentโ€™s pleasure, for the remainder of their lives.

    Reply
  28. Iโ€™ve been exploring for a little for any high quality articles or blog posts on this sort of area . Exploring in Yahoo I at last stumbled upon this web site. Reading this information So iโ€™m happy to convey that I’ve an incredibly good uncanny feeling I discovered exactly what I needed. I most certainly will make certain to donโ€™t forget this website and give it a look on a constant basis.

    Reply
  29. Island Post is the website for a chain of six weekly newspapers that serve the North Shore of Nassau County, Long Island published by Alb Media. The newspapers are comprised of the Great Neck News, Manhasset Times, Roslyn Times, Port Washington Times, New Hyde Park Herald Courier and the Williston Times. Their coverage includes village governments, the towns of Hempstead and North Hempstead, schools, business, entertainment and lifestyle. https://islandpost.us/

    Reply
  30. Hello there! This is kind of off topic but I need some guidance from an established blog. Is it tough to set up your own blog? I’m not very techincal but I can figure things out pretty fast. I’m thinking about creating my own but I’m not sure where to begin. Do you have any points or suggestions? Many thanks

    Reply
  31. ๐Ÿš€ Wow, this blog is like a cosmic journey blasting off into the galaxy of wonder! ๐Ÿ’ซ The thrilling content here is a captivating for the imagination, sparking excitement at every turn. ๐Ÿ’ซ Whether it’s technology, this blog is a goldmine of inspiring insights! #AdventureAwaits Embark into this thrilling experience of discovery and let your imagination roam! ๐ŸŒˆ Don’t just explore, experience the thrill! #FuelForThought Your brain will thank you for this exciting journey through the dimensions of awe! ๐ŸŒ

    Reply
  32. ๐Ÿš€ Wow, this blog is like a fantastic adventure soaring into the universe of wonder! ๐Ÿ’ซ The thrilling content here is a rollercoaster ride for the imagination, sparking curiosity at every turn. ๐ŸŽข Whether it’s technology, this blog is a treasure trove of exciting insights! ๐ŸŒŸ Embark into this thrilling experience of discovery and let your imagination roam! โœจ Don’t just explore, savor the thrill! ๐ŸŒˆ Your brain will thank you for this exciting journey through the realms of discovery! ๐Ÿš€

    Reply
  33. ๐Ÿ’ซ Wow, this blog is like a rocket soaring into the universe of excitement! ๐ŸŽข The mind-blowing content here is a thrilling for the imagination, sparking awe at every turn. ๐ŸŒŸ Whether it’s lifestyle, this blog is a treasure trove of exciting insights! #AdventureAwaits ๐Ÿš€ into this thrilling experience of imagination and let your mind roam! ๐Ÿš€ Don’t just explore, savor the thrill! ๐ŸŒˆ Your brain will be grateful for this exciting journey through the realms of awe! ๐Ÿš€

    Reply
  34. ๐Ÿš€ Wow, this blog is like a fantastic adventure blasting off into the universe of endless possibilities! ๐Ÿ’ซ The thrilling content here is a captivating for the mind, sparking curiosity at every turn. ๐ŸŒŸ Whether it’s inspiration, this blog is a goldmine of inspiring insights! ๐ŸŒŸ ๐Ÿš€ into this thrilling experience of discovery and let your imagination roam! ๐ŸŒˆ Don’t just explore, savor the excitement! ๐ŸŒˆ Your mind will thank you for this exciting journey through the worlds of discovery! ๐ŸŒ

    Reply