- About The Coursera
- About Calculus: Single Variable Part 2 – Differentiation Course
- Calculus: Single Variable Part 2 – Differentiation Quiz Answers
- More About This Course

Hello Peers, Today we are going to share** all week’s assessment and quiz answers** of the **Calculus: Single Variable Part 2 – Differentiation**course launched by **Coursera **totally **free of cost**✅✅✅. This is a** certification course** for every interested student.

In case you didn’t find this course for free, then you can** apply for financial ads** to get this course for totally free.

*Check out this article – “How to Apply for Financial Ads?”*

**About The Coursera**

**Coursera**, **India’s biggest learning platform** launched millions of free courses for students daily. These courses are from various recognized universities, where industry experts and professors teach in a very well manner and in a more understandable way.

Here, you will find ** Calculus: Single Variable Part 2 – Differentiation Exam Answers** in

**Bold Color**which are given below.

These answers are updated recently and are **100% correct✅** answers of all week, assessment, and final exam answers of **Calculus: Single Variable Part 2 – Differentiation **from **Coursera Free Certification Course.**

Use “Ctrl+F” To Find Any Questions Answer. & For Mobile User, You Just Need To Click On Three dots In Your Browser & You Will Get A “Find” Option There. Use These Option to Get Any Random Questions Answer.

**About Calculus: Single Variable Part 2 – Differentiation Course**

This quick course covers the main ideas of Calculus with one variable, with a focus on understanding the ideas and how to use them. This course is perfect for students who are just starting out in engineering, the physical sciences, or the social sciences.

**Course Apply Link – Calculus: Single Variable Part 2 – Differentiation**

**Calculus: Single Variable Part 2 – Differentiation Quiz Answers**

### Week 01: Calculus: Single Variable Part 2 – Differentiation Coursera Quiz Answers

#### Main Quiz 01

Q1. Let f(x) = -x^2+6x-3*f*(*x*)=−*x*2+6*x*−3. Find f'(-2)*f*′(−2).

- -3−3
- -1−1
**1010**- 66
- 44
- 00

Q2. Given the position function \displaystyle p(t) = 6 + \frac{1}{2}t +4t^2*p*(*t*)=6+21*t*+4*t*2 of a particle as a function of time, what is the particle’s velocity at t=1*t*=1 ?

- \displaystyle \frac{1}{2}21
- 66
- 11
**\displaystyle \frac{9}{2}29**- 88
- \displaystyle \frac{17}{2}217

Q3. A very rough model of population size P*P* for an ant species is P(t) = 2\ln(t+2)*P*(*t*)=2ln(*t*+2), where t*t* is time. What is the rate of change of the population at time t = 2*t*=2?

- 22
**\displaystyle \frac{1}{4}41**- 11
- \displaystyle \frac{1}{3}31
- 44
- \displaystyle \frac{1}{2}21

Q4. Find \displaystyle \frac{dV}{dt}*dtdV* for \displaystyle V=\frac{1}{4}t^3*V*=41*t*3

- \displaystyle \frac{dV}{dt} = \frac{3}{4}t^3
*dtdV*=43*t*3 **\displaystyle \frac{dV}{dt} = 3t^2***dtdV*=3*t*2- \displaystyle \frac{dV}{dt} = \frac{1}{3}t^2
*dtdV*=31*t*2 - \displaystyle \frac{dV}{dt} = \frac{3}{4}t^2
*dtdV*=43*t*2 - \displaystyle \frac{dV}{dt} = 0
*dtdV*=0 - \displaystyle \frac{dV}{dt} = \frac{1}{4}t^2
*dtdV*=41*t*2

Q5. If a car’s position is represented by s(t) = 4t^3*s*(*t*)=4*t*3, what is the car’s change in velocity from t=2*t*=2 to t=3*t*=3 ?

- 4848
- 1212
- 6060
**2020**- 7676
- 108108

Q6. A particle’s position, p*p*, as a function of time, t*t*, is represented by \displaystyle p(t) = \frac{1}{3}t^3 – 3t^2 + 9t*p*(*t*)=31*t*3−3*t*2+9*t*. When is the particle at rest?

- Never.
- At t=1
*t*=1. - At t=3
*t*=3. **At t = 6***t*=6.- At t=0
*t*=0. - At \displaystyle t = \frac{1}{3}
*t*=31.

Q7. A rock is dropped from the top of a 320-foot building. The height of the rock at time t*t* is given s(t)=-8t^2+320*s*(*t*)=−8*t*2+320, where t*t* is measured in seconds. Find the speed (that is, the absolute value of the velocity) of the rock when it hits the ground in feet per second. Round your answer to one decimal place.

Hooke’s law states that the force F*F* exerted by an **ideal** spring displaced a distance x*x* from its equilibrium point is given by F(x) = -kx*F*(*x*)=−*k**x*, where the constant k*k* is called the **spring constant** and varies from one spring to another. In real life, many springs are nearly ideal for small displacements; however, for large displacements, they might deviate from what Hooke’s law predicts.

Much of the confusion between nearly-ideal and non-ideal springs is clarified by thinking in terms of series: for x*x* near zero, F(x) = -kx + O(x^2)*F*(*x*)=−*k**x*+*O*(*x*2).

Suppose you have a spring whose force follows the equation F(x) = – 2 \tan 3x*F*(*x*)=−2tan3*x*. What is its spring constant?

- 00
- 33
**1212**- 11
- 22
- 66

#### Practice Quiz 01

Q1. The profit, P*P*, of a company that manufactures and sells N*N* units of a certain product is modeled by the function

P(N) = R(N) – C(N)*P*(*N*)=*R*(*N*)−*C*(*N*)

The revenue function, R(N)=S\cdot N*R*(*N*)=*S*⋅*N*, is the selling price S*S* per unit times the number N*N* of units sold. The company’s cost, C(N)=C_0+C_\mathrm{op}(N)*C*(*N*)=*C*0+*C*op(*N*), is a sum of two terms. The first is a constant C_0*C*0 describing the initial investment needed to set up production. The other term, C_\mathrm{op}(N)*C*op(*N*), varies depending on how many units the company produces, and represents the operating costs.

Companies care not only about profit, but also *marginal profit*, the rate of change of profit with respect to N*N*.

Assume that S = \$50*S*=$50, C_0 = \$75,000*C*0=$75,000, C_\mathrm{op}(N) = \$50 \sqrt{N}*C*op(*N*)=$50*N*, and that the company currently sells N=100*N*=100 units. Compute the marginal profit at this rate of production. Round your answer to one decimal place.

Q2. In Economics, *physical capital* represents the buildings or machines used by a business to produce a product. The *marginal product of physical capital* represents the rate of change of output product with respect to physical capital (informally, if you increase the size of your factory a little, how much more product can you create?).

A particular model tells us that the output product Y*Y* is given, as a function of capital K*K*, by

Y = A K^{\alpha} L^{1-\alpha}*Y*=*A**K**α**L*1−*α*

where A*A* is a constant, L*L* is units of labor (assumed to be constant), and \alpha*α* is a constant between 0 and 1. Determine the marginal product of physical capital predicted by this model.

- \displaystyle \frac{dY}{dK} = \alpha A \frac{L^{1-\alpha}}{K^{\alpha – 1}}
*dKdY*=*αAKα*−1*L*1−*α* - \displaystyle \frac{dY}{dK} = (\alpha – 1)A \big( \frac{L}{K} \big)^{\alpha – 1}
*dKdY*=(*α*−1)*A*(*KL*)*α*−1 - \displaystyle \frac{dY}{dK} = \alpha A K^{\alpha}L^{1-\alpha}
*dKdY*=*αAKαL*1−*α* **\displaystyle \frac{dY}{dK} = \frac{A}{\alpha} \big( \frac{L}{K} \big)^{1-\alpha}***dKdY*=*αA*(*KL*)1−*α*- None of these.
- \displaystyle \frac{dY}{dK} = (1 – \alpha) A (KL)^{1-\alpha}
*dKdY*=(1−*α*)*A*(*KL*)1−*α*

#### Main Quiz 02

Q1. Find the derivative of f(x)= \sqrt{x}(2x^2-4x)*f*(*x*)=*x*(2*x*2−4*x*).

- f'(x) = \sqrt{x}(5x^2-6x)
*f*′(*x*)=*x*(5*x*2−6*x*) - \displaystyle f'(x) = \frac{2x-2}{\sqrt{x}}
*f*′(*x*)=*x*2*x*−2 - f'(x) = 2x^{5/2}-4x^{3/2}
*f*′(*x*)=2*x*5/2−4*x*3/2 - f'(x) = \sqrt{x}(5x-6)
*f*′(*x*)=*x*(5*x*−6) **f'(x) = 2x^{3/2}-4x^{1/2}***f*′(*x*)=2*x*3/2−4*x*1/2- f'(x) = 4\sqrt{x}(x-1)
*f*′(*x*)=4*x*(*x*−1)

Q2. Find the derivative of \displaystyle f(x) = 6x^4 -\frac{3}{x^2}-2\pi*f*(*x*)=6*x*4−*x*23−2*π*.

- \displaystyle f'(x) = 24x^3 – \frac{3}{x^2}
*f*′(*x*)=24*x*3−*x*23 - \displaystyle f'(x) = 24x^3-\frac{6}{x^2}
*f*′(*x*)=24*x*3−*x*26 - \displaystyle f'(x) = 24x^3-\frac{6}{x^3}
*f*′(*x*)=24*x*3−*x*36 - \displaystyle f'(x) = 24x^3 + \frac{3}{x^2}
*f*′(*x*)=24*x*3+*x*23 **\displaystyle f'(x) = 24x^3 – \frac{3}{2x}***f*′(*x*)=24*x*3−2*x*3- \displaystyle f'(x) = 24x^3+\frac{6}{x^3}
*f*′(*x*)=24*x*3+*x*36

Q3. Find the derivative of f(x) = 7(x^3+4x)^5 \cos x*f*(*x*)=7(*x*3+4*x*)5cos*x*.

- f'(x) = -45(x^3 + 4x)^4(3x^2 + 4)\sin x
*f*′(*x*)=−45(*x*3+4*x*)4(3*x*2+4)sin*x* - f'(x) = 7(x^3+4x)^4 \big[ 5(3x^2+4) \cos x – (x^3+4x)\sin x \big]
*f*′(*x*)=7(*x*3+4*x*)4[5(3*x*2+4)cos*x*−(*x*3+4*x*)sin*x*] - f'(x) = 7(x^3+4x)^4 \big[ 5 \cos x – (x^3+4x)\sin x \big]
*f*′(*x*)=7(*x*3+4*x*)4[5cos*x*−(*x*3+4*x*)sin*x*] - f'(x) = 7(x^3+4x)^4 \big[ 5(3x^2+4) \cos x + (x^3+4x)\sin x \big]
*f*′(*x*)=7(*x*3+4*x*)4[5(3*x*2+4)cos*x*+(*x*3+4*x*)sin*x*] **f'(x) = 7(x^3+4x)^4 \big[ 5 \cos x + (x^3+4x)\sin x \big]***f*′(*x*)=7(*x*3+4*x*)4[5cos*x*+(*x*3+4*x*)sin*x*]- f'(x) = 45(x^3 + 4x)^4(3x^2 + 4)\cos x
*f*′(*x*)=45(*x*3+4*x*)4(3*x*2+4)cos*x*

Q4. Find the derivative of f(x) = (e^x + \ln x)\sin x*f*(*x*)=(*ex*+ln*x*)sin*x*.

- f'(x) = (\sin x )(\ln x) + e^x\cos x
*f*′(*x*)=(sin*x*)(ln*x*)+*ex*cos*x* - \displaystyle f'(x) = \frac{\sin x}{x} + e^x\sin x
*f*′(*x*)=*x*sin*x*+*ex*sin*x* - \displaystyle f'(x) = \frac{\sin x}{x} + (\ln x)(\cos x) + e^x\sin x + e^x\cos x
*f*′(*x*)=*x*sin*x*+(ln*x*)(cos*x*)+*ex*sin*x*+*ex*cos*x* - \displaystyle f'(x) = \left( \frac{1}{x}+e^x \right) \cos x
*f*′(*x*)=(*x*1+*ex*)cos*x* **\displaystyle f'(x) = \frac{e^x\sin x}{x}***f*′(*x*)=*xex*sin*x*- f'(x) = e^x(\sin x + \cos x)
*f*′(*x*)=*ex*(sin*x*+cos*x*)

Q5. Find the derivative of \displaystyle f(x) = \frac{\sqrt{x+3}}{x^2}*f*(*x*)=*x*2*x*+3.

- \displaystyle f'(x) = -\frac{3x+12}{2x \sqrt{x+3}}
*f*′(*x*)=−2*xx*+33*x*+12 - \displaystyle f'(x) = -\frac{3x+12}{2x^3 \sqrt{x+3}}
*f*′(*x*)=−2*x*3*x*+33*x*+12 - \displaystyle f'(x) = \frac{5x+12}{2x^3 \sqrt{x+3}}
*f*′(*x*)=2*x*3*x*+35*x*+12 **\displaystyle f'(x) = \frac{(x-4)\sqrt{x+3}}{2x^3}***f*′(*x*)=2*x*3(*x*−4)*x*+3- \displaystyle f'(x) = \frac{5x+12}{2x \sqrt{x+3}}
*f*′(*x*)=2*xx*+35*x*+12 - \displaystyle f'(x) = \frac{1}{4x\sqrt{x+3}}
*f*′(*x*)=4*xx*+31

Q6. Find the derivative of \displaystyle f(x) = \frac{\ln x}{\cos x}*f*(*x*)=cos*x*ln*x*.

- \displaystyle f'(x) = \frac{\cos x – \ln x\sin x}{x\sin^2 x}
*f*′(*x*)=*x*sin2*x*cos*x*−ln*x*sin*x* - \displaystyle f'(x) = \frac{\ln x\sin x}{x\cos^2 x}
*f*′(*x*)=*x*cos2*x*ln*x*sin*x* - \displaystyle f'(x) = \frac{\cos x + \ln x\sin x}{x\cos x}
*f*′(*x*)=*x*cos*x*cos*x*+ln*x*sin*x* - \displaystyle f'(x) = \frac{\cos x + x\ln x\sin x}{x\cos^2 x}
*f*′(*x*)=*x*cos2*x*cos*x*+*x*ln*x*sin*x* - \displaystyle f'(x) = \frac{\cos x – \ln x\sin x}{x\cos^2 x}
*f*′(*x*)=*x*cos2*x*cos*x*−ln*x*sin*x* **\displaystyle f'(x) = \frac{(1 + \ln x)\sin x}{x\cos^2 x}***f*′(*x*)=*x*cos2*x*(1+ln*x*)sin*x*

Q7. Find the derivative of \displaystyle f(x) = \frac{ \sqrt[3]{x} – 4}{x^3}*f*(*x*)=*x*33*x*−4.

- \displaystyle f'(x) = \frac{10\sqrt[3]{x} – 36}{3x^4}
*f*′(*x*)=3*x*4103*x*−36 **\displaystyle f'(x) = \frac{10\sqrt[3]{x} – 36}{x^4}***f*′(*x*)=*x*4103*x*−36- \displaystyle f'(x) = \frac{12 – 2\sqrt[3]{x}}{3x^4}
*f*′(*x*)=3*x*412−23*x* - \displaystyle f'(x) = \frac{36 – 8\sqrt[3]{x}}{3x^4}
*f*′(*x*)=3*x*436−83*x* - \displaystyle f'(x) = \frac{36 – 8\sqrt[3]{x}}{x^4}
*f*′(*x*)=*x*436−83*x* - \displaystyle f'(x) = \frac{12 – 2\sqrt[3]{x}}{x^4}
*f*′(*x*)=*x*412−23*x*

Q8. Find the derivative of f(x)=\sin^3 (x^3)*f*(*x*)=sin3(*x*3).

- f'(x) = 9x^2 \sin^3(x^3) \cos^2 (x^3)
*f*′(*x*)=9*x*2sin3(*x*3)cos2(*x*3) - f'(x) = 3 \sin^2(x^3) \cos(x^3)
*f*′(*x*)=3sin2(*x*3)cos(*x*3) - f'(x) = 9x^2 \sin^2 (x^3) \cos (x^3)
*f*′(*x*)=9*x*2sin2(*x*3)cos(*x*3) - f'(x) = 3\sin^2 (x^3)
*f*′(*x*)=3sin2(*x*3) **f'(x) = 9x^2 \sin^2 (x^2) \cos (3x^2)***f*′(*x*)=9*x*2sin2(*x*2)cos(3*x*2)- f'(x) = 3\sin^2(3x^2)
*f*′(*x*)=3sin2(3*x*2)

Q9. Find the derivative of f(x) = e^{-1/x^2}*f*(*x*)=*e*−1/*x*2.

**\displaystyle f'(x) = \frac{2}{x^3} e^{-1/x^2}***f*′(*x*)=*x*32*e*−1/*x*2- \displaystyle f'(x) = e^{2/x^3}
*f*′(*x*)=*e*2/*x*3 - \displaystyle f'(x) = e^{-2/x^3}
*f*′(*x*)=*e*−2/*x*3 - \displaystyle f'(x) = -\frac{1}{x^2} e^{-1/x^2}
*f*′(*x*)=−*x*21*e*−1/*x*2 - \displaystyle f'(x) = \frac{1}{x^2} e^{-1/x^2}
*f*′(*x*)=*x*21*e*−1/*x*2 - \displaystyle f'(x) = -\frac{2}{x^3} e^{-1/x^2}
*f*′(*x*)=−*x*32*e*−1/*x*2

### Week 02: Calculus: Single Variable Part 2 – Differentiation Coursera Quiz Answers

#### Main Quiz 01

Q1. Use a linear approximation to estimate \sqrt[3]{67}367. Round your answer to four decimal places.

**Hint:** remember that \sqrt[3]{64} = 4364=4. You can check the accuracy of this approximation by noting that \sqrt[3]{67} \approx 4.0615367≈4.0615.

Q2. Use a linear approximation to estimate the cosine of an angle of 66^\mathrm{o}66o. Round your answer to four decimal places.

**Hint:** remember that \displaystyle 60^\mathrm{o} = \frac{\pi}{3}60o=3*π*, and hence \displaystyle 6^\mathrm{o} = \frac{\pi}{30}6o=30*π*. You can check the accuracy of this approximation by noting that \cos 66^\mathrm{o} \approx 0.4067cos66o≈0.4067.

Q3. The golden ratio \displaystyle \varphi = \frac{1+\sqrt{5}}{2}*φ*=21+5 is a root of the polynomial x^2-x-1*x*2−*x*−1. If you use Newton’s method to estimate its value, what is the appropriate update rule for the sequence x_n*xn* ?

**\displaystyle x_{n+1} = x_n + \frac{2x_n – 1}{x_n^2 – x_n – 1}***xn*+1=*xn*+*xn*2−*xn*−12*xn*−1- \displaystyle x_{n+1} = x_n – \frac{x_n^2 – x_n – 1}{2x_n – 1}
*xn*+1=*xn*−2*xn*−1*xn*2−*xn*−1 - \displaystyle x_{n+1} = x_n – \frac{2x_n – 1}{x_n^2 – x_n – 1}
*xn*+1=*xn*−*xn*2−*xn*−12*xn*−1 - \displaystyle x_{n+1} = \frac{x_n^2 – x_n – 1}{2x_n – 1}
*xn*+1=2*xn*−1*xn*2−*xn*−1 - \displaystyle x_{n+1} = x_n + \frac{x_n^2 – x_n – 1}{2x_n – 1}
*xn*+1=*xn*+2*xn*−1*xn*2−*xn*−1 - \displaystyle x_{n+1} = \frac{2x_n – 1}{x_n^2 – x_n – 1}
*xn*+1=*xn*2−*xn*−12*xn*−1

Q4. To approximate \sqrt{10}10 using Newton’s method, what is the appropriate update rule for the sequence x_n*xn* ?

**\displaystyle x_{n+1} = \frac{x_n}{2} + \frac{5}{x_n}***xn*+1=2*xn*+*xn*5- \displaystyle x_{n+1} = \frac{x_n}{2}
*xn*+1=2*xn* - \displaystyle x_{n+1} = x_n + \frac{2x_n}{x_n^2 – 10}
*xn*+1=*xn*+*xn*2−102*xn* - \displaystyle x_{n+1} = \frac{x_n}{2} – \frac{10}{x_n}
*xn*+1=2*xn*−*xn*10 - \displaystyle x_{n+1} = \frac{x_n}{2} – \frac{5}{x_n}
*xn*+1=2*xn*−*xn*5 - \displaystyle x_{n+1} = x_n – \frac{2x_n}{x_n^2 – 10}
*xn*+1=*xn*−*xn*2−102*xn*

Q5. You want to build a square pen for your new chickens, with an area of 1200\,\mathrm{ft}^21200ft2. Not having a calculator handy, you decide to use Newton’s method to approximate the length of one side of the fence. If your first guess is 30\,\mathrm{ft}30ft, what is the next approximation you will get?

- 3535
- 15.0515.05
**4040**- -5−5
- 3030
- 30.0530.05

Q6. You are in charge of designing packaging materials for your company’s new product. The marketing department tells you that you must put them in a cube-shaped box. The engineering department says that you will need a box with a volume of 500\,\mathrm{cm}^3500cm3. What are the dimensions of the cubical box? Starting with a guess of 8\,\mathrm{cm}8cm for the length of the side of the cube, what approximation does one iteration of Newton’s method give you? Round your answer to two decimal places.

#### Practice Quiz 01

Q1. Without using a calculator, approximate 9.98^{98}9.9898. Here are some hints. First, 9.989.98 is close to 1010, and 10^{98}=1\,{\rm E}\,981098=1E98 in scientific notation. What does linear approximation give as an estimate when we decrease from 10^{98}1098 to 9.98^{98}9.9898?

- 1.000\,{\rm E}\,981.000E98
- 0.902\,{\rm E}\,980.902E98
- 1.960\,{\rm E}\,981.960E98
**0.804\,{\rm E}\,980.804E98**- 0.9804\,{\rm E}\,980.9804E98
- 0.822\,{\rm E}\,980.822E98

Q2. A diving-board of length L*L* bends under the weight of a diver standing on its edge. The free end of the board moves down a distance

D = \frac{P}{3EI} L^3*D*=3*E**I**P**L*3

where P*P* is the weight of the diver, E*E* is a constant of elasticity —that depends on the material from which the board is manufactured— and I*I* is a moment of inertia. (These last two quantities will again make an appearance in Lectures 13 and 41, but do not worry about what exactly they mean now…)

Suppose our board has a length L = 2\,\mathrm{m}*L*=2m, and that it takes a deflection of D = 20\,\mathrm{cm}*D*=20cm under the weight of the diver. Use a linear approximation to estimate the deflection that it would take if its length was increased by 20\,\mathrm{cm}20cm

- 20.3\,\mathrm{cm}20.3cm
- 25.7\,\mathrm{cm}25.7cm
**22\,\mathrm{cm}22cm**- 26\,\mathrm{cm}26cm
- 24.8\,\mathrm{cm}24.8cm
- 26.6\,\mathrm{cm}26.6cm

### Main Quiz 02

Q1. You are given the position, velocity and acceleration of a particle at time t = 0*t*=0. The position is p(0) = 2*p*(0)=2, the velocity v(0) = 4*v*(0)=4, and the acceleration a(0) = 3*a*(0)=3. Using this information, which Taylor series should they use to approximate p(t)*p*(*t*), and what is the estimated value of p(4)*p*(4) using this approximation?

**p(t) = 2 + 2t + 3 t^2 + O(t^3)***p*(*t*)=2+2*t*+3*t*2+*O*(*t*3), p(4) \simeq 58*p*(4)≃58.- p(t) = 2 + 4t + 6 t^2 + O(t^3)
*p*(*t*)=2+4*t*+6*t*2+*O*(*t*3), p(4) \simeq 114*p*(4)≃114. - p(t) = 2 + 4t + 3 t^2 + O(t^3)
*p*(*t*)=2+4*t*+3*t*2+*O*(*t*3), p(4) \simeq 66*p*(4)≃66. - \displaystyle p(t) = 2 + 2t + \frac{3}{2} t^2 + O(t^3)
*p*(*t*)=2+2*t*+23*t*2+*O*(*t*3), p(4) \simeq 34*p*(4)≃34. - \displaystyle p(t) = 2 + 4t + \frac{3}{2} t^2 + O(t^3)
*p*(*t*)=2+4*t*+23*t*2+*O*(*t*3), p(4) \simeq 42*p*(4)≃42. - p(t) = 2 + 2t + 6 t^2 + O(t^3)
*p*(*t*)=2+2*t*+6*t*2+*O*(*t*3), p(4) \simeq 106*p*(4)≃106.

Q2. If a particle moves according to the position function s(t) = t^3-6t*s*(*t*)=*t*3−6*t*, what are its position, velocity and acceleration at t=3*t*=3 ?

- s(3) = 9
*s*(3)=9, v(3) = 21*v*(3)=21, a(3) = 18*a*(3)=18 **s(3) = 9***s*(3)=9, v(3) = 21*v*(3)=21, a(3) = 36*a*(3)=36- s(3) = 21
*s*(3)=21, v(3) = 18*v*(3)=18, a(3) = 6*a*(3)=6 - s(3) = 9
*s*(3)=9, v(3) = 18*v*(3)=18, a(3) = 18*a*(3)=18 - s(3) = 9
*s*(3)=9, v(3) = 21*v*(3)=21, a(3) = 9*a*(3)=9 - s(3) = 21
*s*(3)=21, v(3) = 18*v*(3)=18, a(3) = 18*a*(3)=18

Q3. If the position of a car at time t*t* is given by the formula p(t) = t^4 – 24t^2*p*(*t*)=*t*4−24*t*2, for which times t*t* is its velocity decreasing?

- Never: the velocity always increases.
- -\sqrt[3]{12} < t < \sqrt[3]{12}−312<
*t*<312 - t < -2
*t*<−2 **-2 < t < 2−2<***t*<2- -\sqrt{24} < t < \sqrt{24}−24<
*t*<24 - t > 2
*t*>2

Q4. What is a formula for the second derivative of f(t) = t^2\sin 2t*f*(*t*)=*t*2sin2*t*? Use this formula to compute f”(\pi/2)*f*′′(*π*/2).

- f”(t) = 4t\cos 2t + (2-4t^2)\sin 2t
*f*′′(*t*)=4*t*cos2*t*+(2−4*t*2)sin2*t*, and f”(\pi/2) = -2\pi*f*′′(*π*/2)=−2*π* - f”(t) = -4t^2\sin 2t
*f*′′(*t*)=−4*t*2sin2*t*, and f”(\pi/2) =0*f*′′(*π*/2)=0 **f”(t) = -8\sin 2t***f*′′(*t*)=−8sin2*t*, and f”(\pi/2) = 0*f*′′(*π*/2)=0- f”(t) = 8t\cos 2t -4t^2\sin 2t
*f*′′(*t*)=8*t*cos2*t*−4*t*2sin2*t*, and f”(\pi/2) = -4\pi*f*′′(*π*/2)=−4*π* - f”(t) = 4t\cos 2t
*f*′′(*t*)=4*t*cos2*t*, and f”(\pi/2) = -2\pi*f*′′(*π*/2)=−2*π* - f”(t) = 8t\cos 2t + (2-4t^2)\sin 2t
*f*′′(*t*)=8*t*cos2*t*+(2−4*t*2)sin2*t*, and f”(\pi/2) = -4\pi*f*′′(*π*/2)=−4*π*

Q5. Use a Taylor series expansion to compute f^{(3)}(0)*f*(3)(0) for f(x) = \sin^3 \left(\ln(1+x) \right)*f*(*x*)=sin3(ln(1+*x*)).

- -3−3
- 66
**1212**- 33
- 00
- -6−6

Q6. What is the curvature of the graph of the function f(x) = -2\sin(x^2)*f*(*x*)=−2sin(*x*2) at the point (0,0)(0,0)?

- 00
- 22
**\displaystyle \frac{1}{2}21**- 11
- 44
- -4−4

#### Main Quiz 03

Q1. Find all the local maxima and minima of the function y=x e^{-x^2}*y*=*xe*−*x*2.

- The function has local minima at \displaystyle x = \frac{\sqrt{2}}{2}
*x*=22 and \displaystyle x = -\frac{\sqrt{2}}{2}*x*=−22, and a local maximum at x = 0*x*=0. **The function has a local maximum at \displaystyle x = -\frac{\sqrt{2}}{2}***x*=−22, and a local minimum at \displaystyle x = \frac{\sqrt{2}}{2}*x*=22.- The function has local minima at \displaystyle x = \frac{\sqrt{2}}{2}
*x*=22 and \displaystyle x = -\frac{\sqrt{2}}{2}*x*=−22, but no local maxima. - The function has a local maximum at \displaystyle x = \frac{\sqrt{2}}{2}
*x*=22, and a local minimum at \displaystyle x = – \frac{\sqrt{2}}{2}*x*=−22. - The function has local maxima at \displaystyle x = \frac{\sqrt{2}}{2}
*x*=22 and \displaystyle x = -\frac{\sqrt{2}}{2}*x*=−22, and a local minimum at x = 0*x*=0. - The function has local maxima at \displaystyle x = \frac{\sqrt{2}}{2}
*x*=22 and \displaystyle x = -\frac{\sqrt{2}}{2}*x*=−22, but no local minima.

Q2. Which of the following statements is true about the function f(x) = e^{\sin(x^4)}\cos(x^2)*f*(*x*)=*e*sin(*x*4)cos(*x*2) ?

**Its Taylor series expansion about x=0***x*=0 is \displaystyle 1 – \frac{x}{3} + O(x^2)1−3*x*+*O*(*x*2). Hence x=0*x*=0 is not a critical point of f(x)*f*(*x*).- Its Taylor series expansion about x=0
*x*=0 is \displaystyle 1 + \frac{x^3}{2} + O(x^4)1+2*x*3+*O*(*x*4). Hence x=0*x*=0 is a critical point of f(x)*f*(*x*) that is neither a local maximum nor a local minimum. - Its Taylor series expansion about x=0
*x*=0 is \displaystyle 1 + \frac{x^4}{2} + O(x^5)1+2*x*4+*O*(*x*5). Hence it has a local minimum at x=0*x*=0. - Its Taylor series expansion about x=0
*x*=0 is \displaystyle 1 – \frac{x^2}{2} + O(x^5)1−2*x*2+*O*(*x*5). Hence it has a local minimum at x=0*x*=0. - Its Taylor series expansion about x=0
*x*=0 is \displaystyle 1 – \frac{x^2}{2} + O(x^5)1−2*x*2+*O*(*x*5). Hence it has a local maximum at x=0*x*=0. - Its Taylor series expansion about x=0
*x*=0 is \displaystyle 1 + \frac{x^4}{2} + O(x^5)1+2*x*4+*O*(*x*5). Hence it has a local maximum at x=0*x*=0.

Q3. Use a Taylor series about x=0*x*=0 to determine whether the function f(x) = \sin^3(x^3)*f*(*x*)=sin3(*x*3) has a local maximum or local minimum at the origin.

**x=0***x*=0 is a critical point of f*f*, but it is neither a local maximum nor a local minimum.- x=0
*x*=0 is not a critical point of f*f*. - x=0
*x*=0 is a local minimum of f*f*. - x=0
*x*=0 is a local maximum of f*f*.

Q4. Find the location of the global maximum and minimum of f(x) = x^3-6x^2+1*f*(*x*)=*x*3−6*x*2+1 on the interval [-1,7][−1,7].

- The global maximum is attained at x = 0
*x*=0 and the global minimum at x = -1*x*=−1. - The global maximum is attained at x = 0
*x*=0 and the global minimum at x = 4*x*=4. **The global maximum is attained at x = 7***x*=7, but there is no global minimum.- The global maximum is attained at x = 7
*x*=7 and the global minimum at x = 4*x*=4. **The global maximum is attained at x = 7***x*=7 and the global minimum at x = -1*x*=−1.- The global maximum is attained at x = 0
*x*=0, but there is no global minimum.

Q5. Which of the following statements are true for the function \displaystyle f(x) = x^3 + \frac{48}{x^2}*f*(*x*)=*x*3+*x*248 ? Select all that apply.

- x=-2
*x*=−2 is the global maximum of f*f*in [-3, -1][−3,−1] **x=-1***x*=−1 is the global maximum of f*f*in [-3, -1][−3,−1]**x=2***x*=2 is the global maximum of f*f*in [-3, 3][−3,3]- x=1
*x*=1 is the global minimum of f*f*in [1, 3][1,3] - x=2
*x*=2 is the global minimum of f*f*in [1, 3][1,3] - x=1
*x*=1 is the global maximum of f*f*in [1, 3][1,3]

### Week 03: Calculus: Single Variable Part 2 – Differentiation Coursera Quiz Answers

#### Main Quiz 01

Q1. Use implicit differentiation to find \displaystyle \frac{dy}{dx}*dxdy* from the equation y^2 – y = \sin 2x*y*2−*y*=sin2*x*.

- \displaystyle \frac{dy}{dx} = \frac{y^2 – y}{2\cos 2x}
*dxdy*=2cos2*xy*2−*y* - \displaystyle \frac{dy}{dx} = \frac{\sin 2x}{2y – 1}
*dxdy*=2*y*−1sin2*x* - \displaystyle \frac{dy}{dx} = \frac{2\cos 2x}{2y – 1}
*dxdy*=2*y*−12cos2*x* - \displaystyle \frac{dy}{dx} = \frac{2\cos 2x}{y^2 – y}
*dxdy*=*y*2−*y*2cos2*x* **\displaystyle \frac{dy}{dx} = \frac{2y – 1}{\sin 2x}***dxdy*=sin2*x*2*y*−1- \displaystyle \frac{dy}{dx} = \frac{2y – 1}{2\cos 2x}
*dxdy*=2cos2*x*2*y*−1

Q2. Find the derivative \displaystyle \frac{dy}{dx}*dxdy* if x*x* and y*y* are related through xy = e^y*xy*=*ey*.

- \displaystyle \frac{dy}{dx} = \frac{e^y + x}{y}
*dxdy*=*yey*+*x* - \displaystyle \frac{dy}{dx} = \frac{x – e^y}{y}
*dxdy*=*yx*−*ey* - \displaystyle \frac{dy}{dx} = \frac{y}{e^y + x}
*dxdy*=*ey*+*xy* - \displaystyle \frac{dy}{dx} = \frac{y}{x – e^y}
*dxdy*=*x*−*eyy* **\displaystyle \frac{dy}{dx} = \frac{y}{e^y – x}***dxdy*=*ey*−*xy*- \displaystyle \frac{dy}{dx} = \frac{e^y – x}{y}
*dxdy*=*yey*−*x*

Q3. Use implicit differentiation to find \displaystyle \frac{dy}{dx}*dxdy* if \sin x = e^{-y\cos x}sin*x*=*e*−*y*cos*x*.

- \displaystyle \frac{dy}{dx} = y\cos x – e^{y\cos x}\sin x
*dxdy*=*y*cos*x*−*ey*cos*x*sin*x* **\displaystyle \frac{dy}{dx} = \frac{y\sin x – e^{-y\cos x}}{\cos x}***dxdy*=cos*xy*sin*x*−*e*−*y*cos*x*- \displaystyle \frac{dy}{dx} = y\tan x – e^{y\cos x}
*dxdy*=*y*tan*x*−*ey*cos*x* - \displaystyle \frac{dy}{dx} = -y\sin x + e^{-y\cos x}\cos x
*dxdy*=−*y*sin*x*+*e*−*y*cos*x*cos*x* - \displaystyle \frac{dy}{dx} = e^{-y\cos x}(\cos x – y\sin x)
*dxdy*=*e*−*y*cos*x*(cos*x*−*y*sin*x*) - \displaystyle \frac{dy}{dx} = \frac{y – e^{y\cos x}\tan x}{\sin x}
*dxdy*=sin*xy*−*ey*cos*x*tan*x*

Q4. Find the derivative \displaystyle \frac{dy}{dx}*dxdy* from the equation x\tan y – y^2\ln x = 4*x*tan*y*−*y*2ln*x*=4.

- \displaystyle \frac{dy}{dx} = \frac{-y^2}{x^2\sec^2 y}
*dxdy*=*x*2sec2*y*−*y*2 - \displaystyle \frac{dy}{dx} = \tan y – \frac{y^2}{\sec^2 y}
*dxdy*=tan*y*−sec2*yy*2 **\displaystyle \frac{dy}{dx} = \frac{x\tan y – y^2}{2xy\ln x – x^2\sec^2 y}***dxdy*=2*xy*ln*x*−*x*2sec2*yx*tan*y*−*y*2- \displaystyle \frac{dy}{dx} = \frac{2xy\ln x – x^2\sec^2 y}{x\tan y – y^2}
*dxdy*=*x*tan*y*−*y*22*xy*ln*x*−*x*2sec2*y* - \displaystyle \frac{dy}{dx} = \frac{y^2 – \tan y}{x^2\sec^2 y – 2xy\ln x}
*dxdy*=*x*2sec2*y*−2*xy*ln*xy*2−tan*y* - \displaystyle \frac{dy}{dx} = \frac{x\tan y}{2xy\ln x}
*dxdy*=2*xy*ln*xx*tan*y*

Q5. Model a hailstone as a round ball of radius R*R*. As the hailstone falls from the sky, its radius increases at a constant rate C*C*. At what rate does the volume V*V* of the hailstone change?

- \displaystyle \frac{dV}{dt} = \frac{4}{3}\pi C R^3
*dtdV*=34*πCR*3 - \displaystyle \frac{dV}{dt} = \frac{4}{3}\pi C^3
*dtdV*=34*πC*3 **\displaystyle \frac{dV}{dt} = 8\pi C R***dtdV*=8*πCR*- \displaystyle \frac{dV}{dt} = 4\pi C R^2
*dtdV*=4*πCR*2 - \displaystyle \frac{dV}{dt} = \frac{4}{3}\pi R^3
*dtdV*=34*πR*3 - \displaystyle \frac{dV}{dt} = 4\pi R^2
*dtdV*=4*πR*2

Q6. The volume of a cubic box of side-length L*L* is V = L^3*V*=*L*3. How are the relative rates of change of L*L* and V*V* related?

- \displaystyle \frac{dL}{L} = \frac{dV}{V}
*LdL*=*VdV* - \displaystyle \frac{dV}{V} = 3 L^3 \frac{dL}{L}
*VdV*=3*L*3*LdL* - \displaystyle \frac{dL}{L} = 3 \frac{dV}{V}
*LdL*=3*VdV* - \displaystyle \frac{dV}{V} = -\frac{dL}{L}
*VdV*=−*LdL* **\displaystyle \frac{dV}{V} = 0***VdV*=0- \displaystyle \frac{dV}{V} = 3 \frac{dL}{L}
*VdV*=3*LdL*

#### Practice Quiz 01

Q1. Consider a box of height h*h* with a square base of side length L*L*. Assume that L*L* is increasing at a rate of 10\%10% per day, but h*h* is decreasing at a rate of 10\%10% per day. Use a linear approximation to find at what (approximate) rate the volume of the box changing?

**Hint: consider the relative rate of change of the volume of the box.**

**Hint^\mathbf{2}2:** in this case you can very easily calculate the exact rate of change —8.9%—, so using linearization might seem like overkill. However, if you set up things right, you don’t even need a calculator to find out the approximate rate of change! Do you see why?

- Increasing at a rate of 5\%5% per day.
- Increasing at a rate of 10\%10% per day.
- Decreasing at a rate of 10\%10% per day.
**Increasing at a rate of 2.5\%2.5% per day.**- It does not change.
- Decreasing at a rate of 5\%5% per day.

Q2. A large tank of oil is slowly leaking oil into a containment tank surrounding it. The oil tank is a vertical cylinder with a diameter of 10 meters. The containment tank has a square base with side length of 15 meters and tall vertical walls. The bottom of the oil tank and the bottom of the containment tank are concentric (the round base inside the square base). Denote by h_o*ho* the height of the oil inside of the oil tank, and by h_c*hc* the height of the oil in the containment tank. How are the rates of change of these two quantities related?

Q2. \displaystyle dh_c = -\frac{225-25\pi}{25\pi} dh_o*d**h**c*=−25*π*225−25*π**d**h**o*

dh_c = (25\pi – 225) dh_o*d**h**c*=(25*π*−225)*d**h**o*

**\displaystyle dh_c = -\frac{25\pi}{225} dh_o dhc=−22525πdho**

\displaystyle dh_c = (225 – 25\pi) dh_o*d**h**c*=(225−25*π*)*d**h**o*

\displaystyle dh_c = -\frac{25\pi}{225-25\pi} dh_o*d**h**c*=−225−25*π*25*π**d**h**o*

\displaystyle dh_c = -\frac{225}{25\pi} dh_o*dhc*=−25*π*225*dho*

Q3. The *stopping distance* D_\mathrm{stop}*D*stop is the distance traveled by a vehicle from the moment the driver becomes aware of an obstacle in the road until the car stops completely. This occurs in two phases.

The first one, the *reaction phase*, spans from the moment the driver sees the obstacle until he or she has completely depressed the brake pedal. This entails taking the decision to stop the vehicle, lifting the foot from the gas pedal and onto the brake pedal, and pressing the latter down its full distance to obtain maximum braking power. The amount of time necessary to do all this is called the *reaction time* t_\mathrm{react}*t*react, and is independent of the speed at which the vehicle was traveling. Although this quantity varies from driver to driver, it is typically between 1.5\,\mathrm{s}1.5s and 2.5\,\mathrm{s}2.5s. For the purposes of this problem, we will use an average value of 2\,\mathrm{s}2s. The distance traversed by the vehicle in this time is unsurprisingly called *reaction distance* D_\mathrm{react}*D*react and is given by the formula

D_\mathrm{react} = v t_\mathrm{react}*D*react=*v**t*react

where v*v* is the initial speed of the vehicle.

In the *braking phase*, the vehicle decelerates and comes to a complete stop. The *braking distance* D_\mathrm{brake}*D*brake that the vehicle covers in this phase is proportional to the square of the initial speed of the vehicle:

D_\mathrm{brake} = \alpha v^2*D*brake=*α**v*2

The constant of proportionality \alpha*α* depends on the vehicle type and condition, as well as on the road conditions. Consider a typical value of 10^{-2}\,\mathrm{s^2/m}10−2s2/m.

If the initial speed of the vehicle is 108\,\mathrm{km/h} = 30\,\mathrm{m/s}108km/h=30m/s, what is the ratio between the relative rate of change of the stopping distance and the relative rate of change of the initial speed?

**\displaystyle \frac{dD_\mathrm{stop} / D_\mathrm{stop}}{dv / v} = \frac{26}{23}***dv*/*vdD*stop/*D*stop=2326- \displaystyle \frac{dD_\mathrm{stop} / D_\mathrm{stop}}{dv / v} = \frac{24}{23}
*dv*/*vdD*stop/*D*stop=2324 - \displaystyle \frac{dD_\mathrm{stop} / D_\mathrm{stop}}{dv / v} = \frac{27}{23}
*dv*/*vdD*stop/*D*stop=2327 - \displaystyle \frac{dD_\mathrm{stop} / D_\mathrm{stop}}{dv / v} = 1
*dv*/*vdD*stop/*D*stop=1 - \displaystyle \frac{dD_\mathrm{stop} / D_\mathrm{stop}}{dv / v} = \frac{28}{26}
*dv*/*vdD*stop/*D*stop=2628 - \displaystyle \frac{dD_\mathrm{stop} / D_\mathrm{stop}}{dv / v} = \frac{25}{23}
*dv*/*vdD*stop/*D*stop=2325

Q4. Assume that you possess equal amounts of a product X*X* and Y*Y*, but you value them differently. Specifically, your *utility function* is of the form

U(X,Y) = C X^\alpha Y^\beta*U*(*X*,*Y*)=*C**X**α**Y**β*

for \alpha*α*, \beta*β*, and C*C* positive constants. What is your marginal rate of substitution (MRS) of Y*Y* for X*X*?

**Hint:** recall that the MRS is equal to \displaystyle -\frac{dY}{dX}−*dXdY* along the *indifference curve* where U*U* is constant.

- \displaystyle \frac{\beta}{\alpha}
*αβ* - \displaystyle \frac{C}{\alpha\beta}
*αβC* **\displaystyle \frac{\alpha}{\beta}***βα*- 11
- \displaystyle C\frac{\beta}{\alpha}
*Cαβ* - \displaystyle \frac{\alpha Y}{\beta X}
*βXαY*

#### Main Quiz 02

Q1. Find the derivative of f(x) = (\cos x)^x*f*(*x*)=(cos*x*)*x*.

- f'(x) = \ln\cos x – x\tan x
*f*′(*x*)=lncos*x*−*x*tan*x* - f'(x) = (\ln\cos x + x\cot x)(\cos x)^x
*f*′(*x*)=(lncos*x*+*x*cot*x*)(cos*x*)*x* **f'(x) = (\ln\cos x – x\tan x)(\cos x)^{x-1}***f*′(*x*)=(lncos*x*−*x*tan*x*)(cos*x*)*x*−1- f'(x) = – x (\cos x)^{x-1}\sin x
*f*′(*x*)=−*x*(cos*x*)*x*−1sin*x* - f'(x) = (\ln\cos x – x\tan x)(\cos x)^x
*f*′(*x*)=(lncos*x*−*x*tan*x*)(cos*x*)*x* - f'(x) = -(\cos x)^{x-1}\sin x
*f*′(*x*)=−(cos*x*)*x*−1sin*x*

Q2. Find the derivative of f(x) = (\ln x)^x*f*(*x*)=(ln*x*)*x*.

- \displaystyle f'(x) = (\ln x)^x \left(\frac{1}{\ln x} + \ln(\ln x) \right)
*f*′(*x*)=(ln*x*)*x*(ln*x*1+ln(ln*x*)) **\displaystyle f'(x) = \frac{1}{\ln x} + \ln(\ln x)***f*′(*x*)=ln*x*1+ln(ln*x*)- \displaystyle f'(x) = (\ln x)^x \left(\frac{1}{e^x} + e^x\ln x \right)
*f*′(*x*)=(ln*x*)*x*(*ex*1+*ex*ln*x*) - f'(x) = (\ln x)^x \ln(\ln x)
*f*′(*x*)=(ln*x*)*x*ln(ln*x*) - \displaystyle f'(x) = (\ln x)^x \frac{\ln x}{x}
*f*′(*x*)=(ln*x*)*xx*ln*x* - \displaystyle f'(x) = \frac{1}{e^x} + e^x\ln x
*f*′(*x*)=*ex*1+*ex*ln*x*

Q3. Find the derivative of f(x) = x^{\ln x}*f*(*x*)=*x*ln*x*.

**f'(x) = 2\ln x***f*′(*x*)=2ln*x*- f'(x) = 2x^{\ln x} \ln x
*f*′(*x*)=2*x*ln*x*ln*x* - f'(x) = x^{\ln x} \ln x
*f*′(*x*)=*x*ln*x*ln*x* - f'(x) = x^{\ln(x) – 1} \ln x
*f*′(*x*)=*x*ln(*x*)−1ln*x* - f'(x) = 2x^{\ln(x) – 1} \ln x
*f*′(*x*)=2*x*ln(*x*)−1ln*x* - f'(x) = (\ln x + x) x^{\ln x}
*f*′(*x*)=(ln*x*+*x*)*x*ln*x*

Q4. \displaystyle \lim_{x \to +\infty} \left( \frac{x+2}{x+3} \right)^{2x} =*x*→+∞lim(*x*+3*x*+2)2*x*=

**Hint:** write the fraction \displaystyle \frac{x+2}{x+3}*x*+3*x*+2 as 1 + \text{something}1+something.

- e^{3/2}
*e*3/2 **e^2***e*2- e^{-2}
*e*−2 - e^{4/3}
*e*4/3 - e^{2/3}
*e*2/3 - 11

Q5. \displaystyle \lim_{x \to 0^+} \left[ \ln(1+x) \right]^{x} =*x*→0+lim[ln(1+*x*)]*x*=

**11**- e^2
*e*2 - The limit does not exist.
- 00
- \sqrt{e}
*e* - e
*e*

Q6. \displaystyle \lim_{x \to 0} \left(1 + \arctan\frac{x}{2} \right)^{2/x} =*x*→0lim(1+arctan2*x*)2/*x*=

- e^2
*e*2 **\sqrt{e}***e*- 00
- 11
- e
*e* - +\infty+∞

#### Main Quiz 03

Q1. If f(x) = x^{2x}*f*(*x*)=*x*2*x*, compute \displaystyle \frac{df}{dx}*dxdf*.

- 2 \ln \left( x^{2x} – 2x \right)2ln(
*x*2*x*−2*x*) - 2x^{2x}\left(1 + \ln x\right)2
*x*2*x*(1+ln*x*) - 2 \left[ x^x – \ln(2x-1) + 1 \right]2[
*xx*−ln(2*x*−1)+1] - x^{2x} \ln \left( x^{2x}+1 \right)
*x*2*x*ln(*x*2*x*+1) - x^2 + (e^x)^2
*x*2+(*ex*)2 - 2x^{2x-1}2
*x*2*x*−1 - x^{2\ln x} – 2x^2
*x*2ln*x*−2*x*2 - x^{2x} \ln 2x
*x*2*x*ln2*x*

Q2. Consider the function f(x) = \sqrt{3}\,x^2\,e^{1-x}*f*(*x*)=3*x*2*e*1−*x*. Use the formula for curvature,

\kappa = \frac{|f”|}{ \left( 1+|f’|^2 \right)^{3/2}}*κ*=(1+∣*f*′∣2)3/2∣*f*′′∣

to compute the curvature of the graph of f*f* at the point (1,\sqrt{3})(1,3).

- \displaystyle -\frac{\sqrt{3}}{9}−93
- \displaystyle \frac{\sqrt{3}}{\left(\sqrt{1+\sqrt{3}}\right)^3}(1+3)33
- \displaystyle \frac{\sqrt{3}}{64}643
- \displaystyle \frac{2\sqrt{3}}{27}2723
- \displaystyle \frac{x^2-4x+2}{2x-x^2}2
*x*−*x*2*x*2−4*x*+2 - \displaystyle \frac{2}{x} – 1
*x*2−1 - \sqrt{3}3
- \displaystyle \frac{\sqrt{3}}{8}83

Q3. Assume that x*x* and y*y* are related by the equation y \ln x = e^{1-x} + y^3*y*ln*x*=*e*1−*x*+*y*3. Compute \displaystyle \frac{dy}{dx}*dxdy* evaluated at x = 1*x*=1.

- -3−3
- \displaystyle -\frac{1}{3}−31
- \displaystyle \frac{e^2}{6}6
*e*2 - \displaystyle \frac{2 + e^2}{3}32+
*e*2 - \displaystyle \frac{-2 + e^{-2}}{6}6−2+
*e*−2 - 00
- \displaystyle \frac{2-e^2}{3}32−
*e*2 - \displaystyle \frac{1}{3}31

Q4. Use the linear approximation of the function f(x) = \arctan\left(e^{3x}\right)*f*(*x*)=arctan(*e*3*x*) at x = 0*x*=0 to estimate the value of f(0.01)*f*(0.01).

**Hint:** remember that \displaystyle \frac{d}{dx}\arctan(x) = \frac{1}{1+x^2}*dxd*arctan(*x*)=1+*x*21.

- \displaystyle \frac{\pi}{4} + \frac{3}{2}4
*π*+23 - \displaystyle \frac{\pi}{4} – \frac{3}{2}4
*π*−23 - \displaystyle \frac{\pi}{4} + \frac{3}{200}4
*π*+2003 - \displaystyle \frac{\pi}{4} – \frac{1}{20}4
*π*−201 - \displaystyle \frac{\pi}{4} + \frac{1}{20}4
*π*+201 - \displaystyle \frac{\pi}{4} – \frac{1}{200}4
*π*−2001 - \displaystyle \frac{\pi}{4} – \frac{3}{200}4
*π*−2003 - \displaystyle \frac{\pi}{4} + \frac{1}{200}4
*π*+2001

Q5. A rectangular picture frame with total area 50000 \text{ cm}^250000 cm2 includes a border which is 1\text{ cm}1 cm thick at the top and the bottom and 5 \text{ cm}5 cm thick at the left and right side. What is the largest possible area of a picture that can be displayed in this frame?

- 85\text{ cm} \times 470\text{ cm}85 cm×470 cm
- 98\text{ cm} \times 490\text{ cm}98 cm×490 cm
- 80\text{ cm} \times 460\text{ cm}80 cm×460 cm
- 94\text{ cm} \times 475\text{ cm}94 cm×475 cm
- 96\text{ cm} \times 485\text{ cm}96 cm×485 cm
- 95\text{ cm} \times 499\text{ cm}95 cm×499 cm
- 99\text{ cm} \times 495\text{ cm}99 cm×495 cm
- 110\text{ cm} \times 450\text{ cm}110 cm×450 cm

Q6. Which of the following statements are true for the function \displaystyle f(x) = \frac{4}{x} + x^4*f*(*x*)=*x*4+*x*4? In order to receive full credit for this problem, you must select **all** the true statements (there may be many) and **none** of the false statements.

**1 point**

- The global minimum of f
*f*for \displaystyle \frac{1}{2}\leq x \leq 221≤*x*≤2 is at x = 1*x*=1. - f
*f*is not differentiable at x=0*x*=0. - The global maximum of f
*f*for \displaystyle -1\leq x \leq-\frac{1}{2}−1≤*x*≤−21 is at x = -1*x*=−1. - The critical points of f
*f*are at x = -1*x*=−1 and x = 1*x*=1. - The global maximum of f
*f*for -2\leq x \leq -1−2≤*x*≤−1 is at x = -2*x*=−2. - The global maximum of f
*f*for \displaystyle -\frac{3}{2}\leq x \leq 2−23≤*x*≤2 is at x = -1*x*=−1. - The global minimum of f
*f*for -1\leq x \leq 2−1≤*x*≤2 is at x = 1*x*=1. - The global minimum of f
*f*for -2\leq x \leq 2−2≤*x*≤2 is at x = 1*x*=1.

Q7. To approximate \sqrt[3]{15}315 (the cube root of 1515) using Newton’s method, what is the appropriate update rule for the sequence x_n*xn*?

- \displaystyle x_{n+1} = x_n + 3x_n^2
*xn*+1=*xn*+3*xn*2 - \displaystyle x_{n+1} = x_n + \frac{5}{x_n^2}
*xn*+1=*xn*+*xn*25 - \displaystyle x_{n+1} = \frac{2x_n}{3} – \frac{5}{x_n^2}
*xn*+1=32*xn*−*xn*25 - \displaystyle x_{n+1} = \frac{2x_n}{3} + \frac{5}{x_n^2}
*xn*+1=32*xn*+*xn*25 - \displaystyle x_{n+1} = x_n – \frac{3x_n^2}{x_n^3-15}
*xn*+1=*xn*−*xn*3−153*xn*2 - \displaystyle x_{n+1} = \frac{4x_n}{3} – \frac{5}{x_n^2}
*xn*+1=34*xn*−*xn*25 - \displaystyle x_{n+1} = x_n + \frac{3x_n^2}{x_n^3-15}
*xn*+1=*xn*+*xn*3−153*xn*2 - \displaystyle x_{n+1} = \frac{2}{3}x_n
*xn*+1=32*xn*

Q8. Fill in the blank:

\ln^2(x+h) = \ln^2 x + \underline{\qquad}\cdot h + O(h^2)ln2(*x*+*h*)=ln2*x*+⋅*h*+*O*(*h*2)

Here, \ln^2 xln2*x* means \left(\ln x\right)^2(ln*x*)2.

- \displaystyle \frac{2}{x+h}\ln(x+h)
*x*+*h*2ln(*x*+*h*) - 2\ln x2ln
*x* - \displaystyle \frac{2}{x}
*x*2 - \displaystyle \ln \frac{2}{x}ln
*x*2 - 22
- \displaystyle \ln \frac{1}{x}ln
*x*1 - \displaystyle 2\frac{\ln x}{x}2
*x*ln*x* - 2\ln(x+h)2ln(
*x*+*h*)

Q9. Recall that the kinetic energy of a body is

K = \frac{1}{2}mv^2*K*=21*m**v*2

where m*m* is mass and v*v* is velocity. Compute the relative rate of change of kinetic energy, \displaystyle\frac{dK}{K}*KdK*, given that the relative rate of change of mass is -7−7 and the relative rate of change of velocity is +5+5.

- \displaystyle\frac{dK}{K}=-2
*KdK*=−2 - \displaystyle\frac{dK}{K}=-\frac{7}{2}
*KdK*=−27 - Not enough information is given to solve the problem.
- \displaystyle\frac{dK}{K}=\frac{3}{2}
*KdK*=23 - \displaystyle\frac{dK}{K}=5
*KdK*=5 - \displaystyle\frac{dK}{K}=-7
*KdK*=−7 - \displaystyle\frac{dK}{K}=3
*KdK*=3 - \displaystyle\frac{dK}{K}=-9
*KdK*=−9

Q10. Compute the ninth derivative of (x-3)^{10}(*x*−3)10 with respect to x*x*.

- 10(x-3)^910(
*x*−3)9 - \displaystyle\frac{1}{9!}(x-3)^99!1(
*x*−3)9 - 9!9!
- 11
- 9!(x-3)9!(
*x*−3) - 10!10!
- 10!(x-3)10!(
*x*−3) - 00

**More About This Course**

Calculus is one of the greatest things that people have thought of. It helps us understand everything from the orbits of planets to the best size for a city to how often a heart beats.

This quick course covers the main ideas of Calculus with one variable, with a focus on understanding the ideas and how to use them. This course is perfect for students who are just starting out in engineering, the physical sciences, or the social sciences. The course is different because:

1) Taylor series and approximations are introduced and used from the start;

2) a new way of combining discrete and continuous forms of calculus is used;

3) the emphasis is on the ideas rather than the calculations; and

4) the course is taught in a clear, dynamic, and unified way.

In this second part, the second of five, we talk about derivatives, differentiation rules, linearization, higher derivatives, optimization, differentials, and differentiation operators.

**SKILLS YOU WILL GAIN**

- Differential (Mathematics)
- Newton’S Method
- Linear Approximation
- Differential Calculus
- Derivative

**Conclusion**

Hopefully, this article will be useful for you to find all the **Week, final assessment, and Peer Graded Assessment Answers of Calculus: Single Variable Part 2 – Differentiation Quiz of Coursera** and grab some premium knowledge with less effort. If this article really helped you in any way about make sure to share it with your friends on social media and let them also know about this amazing training. You can also check out our other course Answers. So, be with us guys we will share a lot more free courses and their exam/quiz solutions also, and follow our Techno-RJ **Blog** for more updates.

Would you be all for exchanging hyperlinks?

Hello there! Quick question that’s totally off topic. Do you know how to make your site mobile friendly? My weblog looks weird when browsing from my iphone4. I’m trying to find a theme or plugin that might be able to correct this problem. If you have any recommendations, please share. Thanks!

I loved as much as you will receive carried out right here. The sketch is tasteful, your authored subject matter stylish. nonetheless, you command get got an nervousness over that you wish be delivering the following. unwell unquestionably come further formerly again as exactly the same nearly a lot often inside case you shield this increase.

There’s noticeably a bundle to learn about this. I assume you made certain good factors in features also.

Thanks for the sensible critique. Me & my neighbor were just preparing to do a little research about this. We got a grab a book from our area library but I think I learned more from this post. I am very glad to see such great information being shared freely out there.

Excellent blog you have here but I was wondering if you knew of any discussion boards that cover the same topics discussed here? I’d really like to be a part of group where I can get comments from other knowledgeable people that share the same interest. If you have any suggestions, please let me know. Kudos!

It¦s really a great and helpful piece of info. I am satisfied that you just shared this helpful info with us. Please stay us informed like this. Thanks for sharing.

I am constantly thought about this, appreciate it for posting.

You have brought up a very wonderful points, appreciate it for the post.

I?¦ve recently started a website, the info you offer on this site has helped me greatly. Thank you for all of your time & work.

Magnificent goods from you, man. I have understand your stuff previous to and you are just too great. I actually like what you have acquired here, really like what you’re stating and the way in which you say it. You make it enjoyable and you still care for to keep it sensible. I can not wait to read much more from you. This is actually a tremendous web site.

There’s noticeably a bundle to learn about this. I assume you made sure nice points in options also.

I’m not sure where you are getting your info, but great topic. I needs to spend some time learning much more or understanding more. Thanks for excellent information I was looking for this information for my mission.

hello there and thanks to your info – I have certainly picked up something new from proper here. I did on the other hand expertise several technical issues the use of this website, as I skilled to reload the site lots of occasions prior to I may get it to load properly. I were wondering in case your web host is OK? Now not that I’m complaining, however sluggish loading instances instances will often affect your placement in google and can injury your high-quality ranking if ads and ***********|advertising|advertising|advertising and *********** with Adwords. Anyway I am adding this RSS to my e-mail and could glance out for a lot extra of your respective fascinating content. Ensure that you replace this again soon..

Thank you a lot for sharing this with all people you really recognise what you’re talking about! Bookmarked. Kindly also visit my web site =). We can have a hyperlink exchange contract between us!

Good day! This post could not be written any better! Reading this post reminds me of my previous room mate! He always kept chatting about this. I will forward this page to him. Fairly certain he will have a good read. Thank you for sharing!

Very informative and excellent body structure of subject matter, now that’s user pleasant (:.

I visited a lot of website but I believe this one contains something special in it in it

tadalafil liquid order tadalafil 20mg pill best male ed pills

order cefadroxil 500mg generic buy cheap generic cefadroxil buy propecia without a prescription

buy estradiol 2mg online buy lamictal for sale prazosin 2mg uk

buy fluconazole pill order generic ciprofloxacin 500mg buy cipro pill

vermox pills order tretinoin generic tadalafil

order metronidazole 400mg buy trimethoprim pill buy keflex online

purchase cleocin online fildena oral low cost ed pills

indocin price indocin canada suprax generic

purchase nolvadex sale order generic ceftin 250mg cefuroxime 500mg pill

purchase trimox pills buy biaxin 250mg buy biaxin 500mg

catapres 0.1 mg us catapres buy online cheap spiriva

purchase bimatoprost generic purchase robaxin online cheap order trazodone sale

sildenafil pills purchase sildenafil for sale sildalis medication

arava 20mg drug azulfidine medication buy generic azulfidine

purchase absorica without prescription azithromycin 500mg over the counter azithromycin 250mg cheap

stromectol pills stromectol pills buy prednisone 40mg online

buy azithromycin 500mg sale azithromycin price buy generic gabapentin online

cheap lasix 100mg ventolin 4mg cost buy generic ventolin for sale

order vardenafil 20mg generic order tizanidine for sale buy hydroxychloroquine 200mg pills

olmesartan for sale online order divalproex 500mg order divalproex without prescription

order temovate generic where to buy clobetasol without a prescription oral cordarone

buy digoxin sale purchase telmisartan without prescription molnupiravir 200mg without prescription

Hello There. I found your blog using msn. That is a really neatly written article. I’ll make sure to bookmark it and come back to read more of your useful information. Thanks for the post. I will definitely comeback.

buy generic naproxen prevacid cheap buy generic lansoprazole over the counter

coreg uk coreg where to buy purchase chloroquine pills

where to buy proventil without a prescription order protonix 40mg pill generic pyridium

singulair 10mg over the counter buy amantadine cheap buy dapsone 100 mg online

olumiant online order order atorvastatin 80mg pills order atorvastatin 40mg for sale

buy nifedipine 10mg for sale buy allegra 120mg sale order fexofenadine pill

buy generic amlodipine for sale order amlodipine 10mg pill buy omeprazole 20mg pills

priligy 30mg cheap order cytotec for sale xenical 120mg over the counter

lopressor online order methylprednisolone 16 mg tablet order medrol pill

how to get diltiazem without a prescription zovirax order allopurinol usa

oral aristocort 10mg loratadine price order loratadine pills

order crestor 20mg pill order generic rosuvastatin 10mg motilium where to buy

purchase sumycin pills order tetracycline 250mg generic purchase ozobax generic

ampicillin 500mg us buy generic flagyl 400mg order metronidazole for sale

toradol 10mg uk order inderal 20mg pills inderal 20mg sale

buy bactrim 480mg generic buy clindamycin tablets buy cleocin generic

plavix 75mg generic medex order online medex drug

where can i buy erythromycin order nolvadex 20mg sale order nolvadex pill

order metoclopramide 10mg without prescription cozaar for sale online nexium online buy

order generic topiramate levaquin 250mg ca purchase levofloxacin for sale

methocarbamol 500mg sale buy generic robaxin over the counter suhagra 100mg canada

buy dutasteride order zantac without prescription cheap meloxicam 7.5mg

purchase sildenafil online buy aurogra generic estrace 2mg generic

buy celecoxib pills for sale ondansetron 8mg pills cost zofran

order spironolactone 25mg sale spironolactone online order buy valacyclovir

buy lamictal 200mg pill lamotrigine 200mg tablet order minipress 1mg for sale

order proscar 1mg sildenafil pills 25mg viagra 100 mg

cheap retin gel purchase tadalafil buy generic avana 100mg

Excellent blog here! Also your website loads up fast! What host are you using? Can I get your affiliate link to your host? I wish my site loaded up as quickly as yours lol

cost tadalafil 20mg cialis 20mg oral order sildenafil 100mg online cheap

order tadalafil 10mg generic tadalafil 20mg over the counter indocin over the counter

Oh my goodness! an incredible article dude. Thanks Nevertheless I am experiencing problem with ur rss . Don’t know why Unable to subscribe to it. Is there anybody getting an identical rss downside? Anybody who knows kindly respond. Thnkx

tadalafil 20mg uk tadalafil 40mg generic buy erectile dysfunction medication

order terbinafine 250mg generic buy terbinafine without prescription trimox pill

sulfasalazine 500 mg ca calan 240mg cost verapamil online order

order generic anastrozole 1 mg buy generic arimidex 1 mg catapres 0.1 mg tablet

divalproex over the counter imdur pills order isosorbide generic

buy imuran sale purchase telmisartan sale buy telmisartan 80mg online

molnunat 200 mg cost order molnunat 200 mg pills cefdinir tablet

lansoprazole ca pantoprazole brand buy generic protonix

order phenazopyridine online cheap phenazopyridine 200 mg brand buy symmetrel generic

dapsone cheap adalat order order perindopril 8mg online

cheapest ed pills cialis from canada order tadalafil 40mg generic

allegra 180mg without prescription buy allegra pills cost amaryl

arcoxia 120mg pills buy etoricoxib pills order astelin 10ml online

buy hytrin pills for sale purchase arava online cheap buy cialis 5mg online cheap

order avapro 150mg generic buspar over the counter buy buspirone 10mg sale

cordarone 200mg without prescription how to get amiodarone without a prescription order phenytoin generic

order albenza 400mg generic buy medroxyprogesterone 10mg for sale purchase medroxyprogesterone without prescription

order biltricide 600mg praziquantel oral order periactin 4mg online

buy oxytrol medication alendronate 35mg uk cost fosamax 70mg

luvox 100mg cost duloxetine buy online buy duloxetine 20mg without prescription

order generic nitrofurantoin 100 mg nortriptyline sale order pamelor online

I am typically to running a blog and i actually respect your content. The article has actually peaks my interest. I am going to bookmark your website and maintain checking for brand new information.

glipizide uk order glucotrol online buy betamethasone 20 gm generic

buy anafranil 25mg pills purchase sporanox online where can i buy progesterone

anacin oral generic paxil famotidine 20mg drug

order prograf without prescription order tacrolimus 1mg for sale ropinirole 2mg drug

purchase diovan online combivent 100mcg drug combivent 100mcg uk

calcitriol pills buy trandate generic fenofibrate 200mg price

It?¦s really a cool and helpful piece of information. I am glad that you just shared this useful information with us. Please keep us informed like this. Thank you for sharing.

buy generic decadron nateglinide 120mg over the counter starlix us

trileptal cheap oxcarbazepine medication order urso 150mg for sale

The following time I learn a weblog, I hope that it doesnt disappoint me as a lot as this one. I imply, I do know it was my option to learn, however I really thought youd have something interesting to say. All I hear is a bunch of whining about one thing that you could fix if you werent too busy searching for attention.

captopril without prescription purchase captopril pills carbamazepine online buy

zyban 150mg canada buy atomoxetine without a prescription atomoxetine usa

ciprofloxacin 500mg brand lincomycin price order cefadroxil 500mg online

cheap quetiapine lexapro 10mg ca escitalopram 10mg canada

frumil canada clindac a online order zovirax without prescription

buy generic zebeta for sale indapamide order online oxytetracycline 250mg pills

order valaciclovir for sale order famvir 500mg for sale order ofloxacin 400mg for sale

order keppra online viagra 100mg uk order generic sildenafil 100mg

buy vantin 200mg generic buy generic cefaclor flixotide sale

cialis 10mg canada order viagra generic sildenafil women

zaditor cost zaditor pills cheap imipramine 75mg

minoxidil us order tamsulosin 0.2mg online best ed pills online

precose 50mg brand buy generic micronase over the counter griseofulvin 250 mg pills

Wow! This blog looks exactly like my old one! It’s on a completely different subject but it has pretty much the same layout and design. Wonderful choice of colors!

order aspirin 75mg for sale order aspirin 75 mg pills order zovirax creams

Would you be interested in exchanging hyperlinks?

Superb blog! Do you have any helpful hints for aspiring writers? I’m hoping to start my own blog soon but I’m a little lost on everything. Would you advise starting with a free platform like WordPress or go for a paid option? There are so many options out there that I’m completely overwhelmed .. Any recommendations? Many thanks!

dipyridamole 25mg drug pravachol 20mg for sale order pravachol 20mg online

where to buy melatonin without a prescription buy cerazette cheap danocrine online

duphaston pill sitagliptin for sale empagliflozin 10mg for sale

fludrocortisone 100mcg tablet order dulcolax 5 mg sale buy generic imodium

order monograph 600 mg without prescription monograph 600mg without prescription cilostazol 100mg price

prasugrel 10mg cost buy dimenhydrinate 50mg generic buy tolterodine 1mg generic

buy ferrous 100 mg without prescription generic actonel order sotalol 40mg

purchase mestinon for sale pyridostigmine 60 mg for sale buy rizatriptan online

I all the time used to read article in news papers but now as I am a user of web so from

now I am using net for articles or reviews, thanks to

web.

buy generic xalatan over the counter buy cheap exelon cost exelon 6mg

betahistine medication probenecid 500 mg without prescription benemid 500 mg without prescription

purchase premarin pills order generic sildenafil 50mg cost sildenafil

micardis 80mg without prescription purchase micardis online cheap buy molnupiravir 200 mg online

tadalafil india order tadalafil 40mg online order viagra 50mg without prescription

buy cenforce 100mg online cheap order cenforce 50mg pills order chloroquine online

buy modafinil medication buy modafinil 200mg buy generic prednisone over the counter

buy isotretinoin 40mg without prescription order accutane 20mg pill brand zithromax 250mg

buy azipro 500mg online cheap order azithromycin 500mg without prescription gabapentin price

buy lipitor 40mg without prescription atorvastatin 10mg canada cost norvasc 5mg

us blackjack online casino free spin order lasix sale

buy protonix 20mg sale cheap lisinopril 2.5mg cost pyridium 200mg

poker online real money poker games online purchase albuterol pills

Woah! I’m really digging the template/theme of this site. It’s simple, yet effective.

A lot of times it’s very difficult to get that “perfect balance”

between usability and visual appearance. I must say you’ve done a

fantastic job with this. Additionally, the blog loads super quick for me on Chrome.

Exceptional Blog!

blackjack online money stromectol 6mg drug ivermectin 1%cream

I delight in, lead to I found just what I was taking a look for.

You have ended my 4 day long hunt! God Bless you man. Have a nice day.

Bye

amantadine without prescription order avlosulfon 100 mg without prescription order avlosulfon without prescription

spins real money online augmentin 375mg without prescription order levoxyl online cheap

serophene usa buy azathioprine 50mg online azathioprine 25mg cost

buy oral methylprednisolone triamcinolone 10mg price buy aristocort online cheap

cheap levitra 10mg vardenafil 10mg price tizanidine for sale

buy aceon cheap purchase coversum generic allegra 180mg canada

cheap phenytoin 100 mg buy generic dilantin 100 mg order generic oxybutynin 2.5mg

lioresal pills baclofen 10mg for sale toradol 10mg over the counter

Have you ever considered publishing an e-book or guest authoring on other blogs?

I have a blog centered on the same subjects you discuss

and would love to have you share some stories/information. I know my audience would value your work.

If you’re even remotely interested, feel free to send me an e-mail.

claritin brand purchase claritin online buy dapoxetine pill

ozobax brand toradol online buy purchase toradol generic

fosamax 70mg generic brand colcrys 0.5mg buy generic furadantin online

buy inderal online cheap plavix us where can i buy plavix

order amaryl 4mg generic buy arcoxia 120mg for sale cost arcoxia

buy pamelor without prescription buy anacin 500mg generic purchase panadol online cheap

purchase warfarin generic reglan 10mg over the counter order metoclopramide

order xenical 120mg generic diltiazem 180mg price buy generic diltiazem online

I believe that is one of the so much significant

information for me. And i am glad studying your article.

But want to statement on few normal things, The web site style is perfect, the

articles is in point of fact great : D. Good job, cheers

Быстромонтажные здания: финансовая выгода в каждом кирпиче!

В современном мире, где минуты – капитал, строения быстрого монтажа стали реальным спасением для бизнеса. Эти новаторские строения объединяют в себе надежность, экономичное использование ресурсов и быстрое строительство, что позволяет им превосходным выбором для различных бизнес-проектов.

[url=https://bystrovozvodimye-zdanija-moskva.ru/]Быстровозводимые здания[/url]

1. Скорость строительства: Часы – ключевой момент в финансовой сфере, и скоро возводимые строения позволяют существенно сократить сроки строительства. Это значительно ценится в постановках, когда необходимо оперативно начать предпринимательскую деятельность и начать монетизацию.

2. Экономия: За счет улучшения процессов изготовления элементов и сборки на объекте, финансовые издержки на быстровозводимые объекты часто бывает менее, по сопоставлению с традиционными строительными задачами. Это позволяет сэкономить средства и получить более высокую рентабельность инвестиций.

Подробнее на [url=https://xn--73-6kchjy.xn--p1ai/]https://scholding.ru[/url]

В заключение, сооружения быстрого монтажа – это лучшее решение для коммерческих задач. Они обладают ускоренную установку, бюджетность и долговечность, что придает им способность превосходным выбором для профессионалов, готовых начать прибыльное дело и получать прибыль. Не упустите возможность сэкономить время и средства, идеальные сооружения быстрого монтажа для вашего следующего делового мероприятия!

Скорозагружаемые здания: коммерческая выгода в каждом кирпиче!

В современном мире, где время имеет значение, экспресс-конструкции стали настоящим выходом для экономической сферы. Эти новейшие строения обладают устойчивость, экономичность и быстрый монтаж, что дает им возможность лучшим выбором для разнообразных предпринимательских инициатив.

[url=https://bystrovozvodimye-zdanija-moskva.ru/]Стоимость постройки быстровозводимого здания[/url]

1. Срочное строительство: Секунды – самое ценное в коммерции, и скоростроительные конструкции позволяют существенно сократить сроки строительства. Это особенно выгодно в моменты, когда срочно требуется начать бизнес и начать получать прибыль.

2. Экономия средств: За счет совершенствования производственных процессов элементов и сборки на площадке, финансовые издержки на быстровозводимые объекты часто снижается, по сопоставлению с традиционными строительными задачами. Это способствует сбережению денежных ресурсов и достичь более высокой инвестиционной доходности.

Подробнее на [url=https://xn--73-6kchjy.xn--p1ai/]http://www.scholding.ru[/url]

В заключение, объекты быстрого возвода – это превосходное решение для проектов любого масштаба. Они комбинируют в себе скорость строительства, финансовую выгоду и устойчивость, что позволяет им оптимальным решением для фирм, активно нацеленных на скорый старт бизнеса и получать доход. Не упустите шанс на сокращение времени и издержек, превосходные экспресс-конструкции для ваших будущих инициатив!

famotidine 40mg usa buy famotidine without a prescription prograf 5mg oral

astelin 10ml oral order avapro pills buy cheap generic irbesartan

nexium online order topiramate without prescription buy topiramate 100mg

allopurinol 100mg us buy zyloprim 100mg generic buy generic crestor over the counter

zantac 150mg pills mobic 7.5mg cheap buy generic celecoxib

cheap buspirone 5mg buspirone 10mg sale amiodarone 100mg oral

Spot on with this write-up, I actually suppose this website needs far more consideration. I’ll probably be once more to read rather more, thanks for that info.

flomax 0.4mg sale order generic ondansetron order zocor 20mg sale

order domperidone 10mg for sale coreg over the counter buy generic tetracycline over the counter

buy spironolactone 100mg pill spironolactone usa cheap propecia 5mg

money can t buy everything essay how to write a hiring letter edit my paper

forcan pills purchase diflucan pill ciprofloxacin 500mg uk

flagyl pills cheap sulfamethoxazole keflex 125mg brand

order cleocin sale cleocin online buy sildenafil price

buy tretinoin gel sale tretinoin over the counter how to buy avanafil

nolvadex cost nolvadex tablet symbicort generic

tadalafil online buy order tadalafil 10mg pills brand indomethacin 75mg

order ceftin 250mg generic where to buy robaxin without a prescription buy robaxin online cheap

purchase desyrel online cheap buy generic clindamycin how to buy clindamycin

terbinafine over the counter lamisil 250mg brand sugarhouse casino online

generic aspirin buy aspirin 75 mg for sale free spins no deposit canada

pre written essays for sale purchase suprax online cheap cefixime 200mg ca

help writing paper online canadian casino real money internet roulette

buy amoxicillin medication amoxicillin cost buy clarithromycin 250mg sale

buy calcitriol 0.25 mg online cheap purchase rocaltrol buy tricor 200mg without prescription

buy catapres online cheap buy tiotropium medication spiriva pills

best acne pills prescription acne medication names pills purchase oxcarbazepine pill

I’ve been surfing online more than three hours nowadays, but I by no means discovered any attention-grabbing article like yours. It?¦s beautiful price sufficient for me. In my view, if all web owners and bloggers made good content material as you probably did, the internet will probably be a lot more useful than ever before.

sleeping tablets without a prescription sleep prescription online weight loss medication online prescription

purchase letrozole without prescription order femara 2.5 mg online cheap order abilify 30mg for sale

medication to stop smoking cigarettes nicotine replacement therapy side effects 10 most strongest pain pills

purchase provera buy generic praziquantel online hydrochlorothiazide us

antiviral medication for hsv 2 online genital herpes medication newest diabetic drugs

cost cyproheptadine 4mg order luvox 100mg online cheap ketoconazole 200mg without prescription