Calculus: Single Variable Part 2 – Differentiation Coursera Quiz Answers 2022 | All Weeks Assessment Answers [💯Correct Answer]

Hello Peers, Today we are going to share all week’s assessment and quiz answers of the Calculus: Single Variable Part 2 – Differentiationcourse launched by Coursera totally free of cost✅✅✅. This is a certification course for every interested student.

In case you didn’t find this course for free, then you can apply for financial ads to get this course for totally free.

Check out this article “How to Apply for Financial Ads?”

About The Coursera

Coursera, India’s biggest learning platform launched millions of free courses for students daily. These courses are from various recognized universities, where industry experts and professors teach in a very well manner and in a more understandable way.


Here, you will find Calculus: Single Variable Part 2 – Differentiation Exam Answers in Bold Color which are given below.

These answers are updated recently and are 100% correct✅ answers of all week, assessment, and final exam answers of Calculus: Single Variable Part 2 – Differentiation from Coursera Free Certification Course.

Use “Ctrl+F” To Find Any Questions Answer. & For Mobile User, You Just Need To Click On Three dots In Your Browser & You Will Get A “Find” Option There. Use These Option to Get Any Random Questions Answer.

About Calculus: Single Variable Part 2 – Differentiation Course

This quick course covers the main ideas of Calculus with one variable, with a focus on understanding the ideas and how to use them. This course is perfect for students who are just starting out in engineering, the physical sciences, or the social sciences.

Course Apply Link – Calculus: Single Variable Part 2 – Differentiation

Calculus: Single Variable Part 2 – Differentiation Quiz Answers

Week 01: Calculus: Single Variable Part 2 – Differentiation Coursera Quiz Answers

Main Quiz 01

Q1. Let f(x) = -x^2+6x-3f(x)=−x2+6x−3. Find f'(-2)f′(−2).

  • -3−3
  • -1−1
  • 1010
  • 66
  • 44
  • 00

Q2. Given the position function \displaystyle p(t) = 6 + \frac{1}{2}t +4t^2p(t)=6+21​t+4t2 of a particle as a function of time, what is the particle’s velocity at t=1t=1 ?

  • \displaystyle \frac{1}{2}21​
  • 66
  • 11
  • \displaystyle \frac{9}{2}29​
  • 88
  • \displaystyle \frac{17}{2}217​

Q3. A very rough model of population size PP for an ant species is P(t) = 2\ln(t+2)P(t)=2ln(t+2), where tt is time. What is the rate of change of the population at time t = 2t=2?

  • 22
  • \displaystyle \frac{1}{4}41​
  • 11
  • \displaystyle \frac{1}{3}31​
  • 44
  • \displaystyle \frac{1}{2}21​

Q4. Find \displaystyle \frac{dV}{dt}dtdV​ for \displaystyle V=\frac{1}{4}t^3V=41​t3

  • \displaystyle \frac{dV}{dt} = \frac{3}{4}t^3dtdV​=43​t3
  • \displaystyle \frac{dV}{dt} = 3t^2dtdV​=3t2
  • \displaystyle \frac{dV}{dt} = \frac{1}{3}t^2dtdV​=31​t2
  • \displaystyle \frac{dV}{dt} = \frac{3}{4}t^2dtdV​=43​t2
  • \displaystyle \frac{dV}{dt} = 0dtdV​=0
  • \displaystyle \frac{dV}{dt} = \frac{1}{4}t^2dtdV​=41​t2

Q5. If a car’s position is represented by s(t) = 4t^3s(t)=4t3, what is the car’s change in velocity from t=2t=2 to t=3t=3 ?

  • 4848
  • 1212
  • 6060
  • 2020
  • 7676
  • 108108

Q6. A particle’s position, pp, as a function of time, tt, is represented by \displaystyle p(t) = \frac{1}{3}t^3 – 3t^2 + 9tp(t)=31​t3−3t2+9t. When is the particle at rest?

  • Never.
  • At t=1t=1.
  • At t=3t=3.
  • At t = 6t=6.
  • At t=0t=0.
  • At \displaystyle t = \frac{1}{3}t=31​.

Q7. A rock is dropped from the top of a 320-foot building. The height of the rock at time tt is given s(t)=-8t^2+320s(t)=−8t2+320, where tt is measured in seconds. Find the speed (that is, the absolute value of the velocity) of the rock when it hits the ground in feet per second. Round your answer to one decimal place.

Hooke’s law states that the force FF exerted by an ideal spring displaced a distance xx from its equilibrium point is given by F(x) = -kxF(x)=−kx, where the constant kk is called the spring constant and varies from one spring to another. In real life, many springs are nearly ideal for small displacements; however, for large displacements, they might deviate from what Hooke’s law predicts.

Much of the confusion between nearly-ideal and non-ideal springs is clarified by thinking in terms of series: for xx near zero, F(x) = -kx + O(x^2)F(x)=−kx+O(x2).

Suppose you have a spring whose force follows the equation F(x) = – 2 \tan 3xF(x)=−2tan3x. What is its spring constant?

  • 00
  • 33
  • 1212
  • 11
  • 22
  • 66

Practice Quiz 01

Q1. The profit, PP, of a company that manufactures and sells NN units of a certain product is modeled by the function

P(N) = R(N) – C(N)P(N)=R(N)−C(N)

The revenue function, R(N)=S\cdot NR(N)=SN, is the selling price SS per unit times the number NN of units sold. The company’s cost, C(N)=C_0+C_\mathrm{op}(N)C(N)=C0​+Cop​(N), is a sum of two terms. The first is a constant C_0C0​ describing the initial investment needed to set up production. The other term, C_\mathrm{op}(N)Cop​(N), varies depending on how many units the company produces, and represents the operating costs.

Companies care not only about profit, but also marginal profit, the rate of change of profit with respect to NN.

Assume that S = \$50S=$50, C_0 = \$75,000C0​=$75,000, C_\mathrm{op}(N) = \$50 \sqrt{N}Cop​(N)=$50N​, and that the company currently sells N=100N=100 units. Compute the marginal profit at this rate of production. Round your answer to one decimal place.

Q2. In Economics, physical capital represents the buildings or machines used by a business to produce a product. The marginal product of physical capital represents the rate of change of output product with respect to physical capital (informally, if you increase the size of your factory a little, how much more product can you create?).

A particular model tells us that the output product YY is given, as a function of capital KK, by

Y = A K^{\alpha} L^{1-\alpha}Y=AKαL1−α

where AA is a constant, LL is units of labor (assumed to be constant), and \alphaα is a constant between 0 and 1. Determine the marginal product of physical capital predicted by this model.

  • \displaystyle \frac{dY}{dK} = \alpha A \frac{L^{1-\alpha}}{K^{\alpha – 1}}dKdY​=αAKα−1L1−α
  • \displaystyle \frac{dY}{dK} = (\alpha – 1)A \big( \frac{L}{K} \big)^{\alpha – 1}dKdY​=(α−1)A(KL​)α−1
  • \displaystyle \frac{dY}{dK} = \alpha A K^{\alpha}L^{1-\alpha}dKdY​=αAKαL1−α
  • \displaystyle \frac{dY}{dK} = \frac{A}{\alpha} \big( \frac{L}{K} \big)^{1-\alpha}dKdY​=αA​(KL​)1−α
  • None of these.
  • \displaystyle \frac{dY}{dK} = (1 – \alpha) A (KL)^{1-\alpha}dKdY​=(1−α)A(KL)1−α

Main Quiz 02

Q1. Find the derivative of f(x)= \sqrt{x}(2x^2-4x)f(x)=x​(2x2−4x).

  • f'(x) = \sqrt{x}(5x^2-6x)f′(x)=x​(5x2−6x)
  • \displaystyle f'(x) = \frac{2x-2}{\sqrt{x}}f′(x)=x​2x−2​
  • f'(x) = 2x^{5/2}-4x^{3/2}f′(x)=2x5/2−4x3/2
  • f'(x) = \sqrt{x}(5x-6)f′(x)=x​(5x−6)
  • f'(x) = 2x^{3/2}-4x^{1/2}f′(x)=2x3/2−4x1/2
  • f'(x) = 4\sqrt{x}(x-1)f′(x)=4x​(x−1)

Q2. Find the derivative of \displaystyle f(x) = 6x^4 -\frac{3}{x^2}-2\pif(x)=6x4−x23​−2π.

  • \displaystyle f'(x) = 24x^3 – \frac{3}{x^2}f′(x)=24x3−x23​
  • \displaystyle f'(x) = 24x^3-\frac{6}{x^2}f′(x)=24x3−x26​
  • \displaystyle f'(x) = 24x^3-\frac{6}{x^3}f′(x)=24x3−x36​
  • \displaystyle f'(x) = 24x^3 + \frac{3}{x^2}f′(x)=24x3+x23​
  • \displaystyle f'(x) = 24x^3 – \frac{3}{2x}f′(x)=24x3−2x3​
  • \displaystyle f'(x) = 24x^3+\frac{6}{x^3}f′(x)=24x3+x36​

Q3. Find the derivative of f(x) = 7(x^3+4x)^5 \cos xf(x)=7(x3+4x)5cosx.

  • f'(x) = -45(x^3 + 4x)^4(3x^2 + 4)\sin xf′(x)=−45(x3+4x)4(3x2+4)sinx
  • f'(x) = 7(x^3+4x)^4 \big[ 5(3x^2+4) \cos x – (x^3+4x)\sin x \big]f′(x)=7(x3+4x)4[5(3x2+4)cosx−(x3+4x)sinx]
  • f'(x) = 7(x^3+4x)^4 \big[ 5 \cos x – (x^3+4x)\sin x \big]f′(x)=7(x3+4x)4[5cosx−(x3+4x)sinx]
  • f'(x) = 7(x^3+4x)^4 \big[ 5(3x^2+4) \cos x + (x^3+4x)\sin x \big]f′(x)=7(x3+4x)4[5(3x2+4)cosx+(x3+4x)sinx]
  • f'(x) = 7(x^3+4x)^4 \big[ 5 \cos x + (x^3+4x)\sin x \big]f′(x)=7(x3+4x)4[5cosx+(x3+4x)sinx]
  • f'(x) = 45(x^3 + 4x)^4(3x^2 + 4)\cos xf′(x)=45(x3+4x)4(3x2+4)cosx

Q4. Find the derivative of f(x) = (e^x + \ln x)\sin xf(x)=(ex+lnx)sinx.

  • f'(x) = (\sin x )(\ln x) + e^x\cos xf′(x)=(sinx)(lnx)+excosx
  • \displaystyle f'(x) = \frac{\sin x}{x} + e^x\sin xf′(x)=xsinx​+exsinx
  • \displaystyle f'(x) = \frac{\sin x}{x} + (\ln x)(\cos x) + e^x\sin x + e^x\cos xf′(x)=xsinx​+(lnx)(cosx)+exsinx+excosx
  • \displaystyle f'(x) = \left( \frac{1}{x}+e^x \right) \cos xf′(x)=(x1​+ex)cosx
  • \displaystyle f'(x) = \frac{e^x\sin x}{x}f′(x)=xexsinx
  • f'(x) = e^x(\sin x + \cos x)f′(x)=ex(sinx+cosx)

Q5. Find the derivative of \displaystyle f(x) = \frac{\sqrt{x+3}}{x^2}f(x)=x2x+3​​.

  • \displaystyle f'(x) = -\frac{3x+12}{2x \sqrt{x+3}}f′(x)=−2xx+3​3x+12​
  • \displaystyle f'(x) = -\frac{3x+12}{2x^3 \sqrt{x+3}}f′(x)=−2x3x+3​3x+12​
  • \displaystyle f'(x) = \frac{5x+12}{2x^3 \sqrt{x+3}}f′(x)=2x3x+3​5x+12​
  • \displaystyle f'(x) = \frac{(x-4)\sqrt{x+3}}{2x^3}f′(x)=2x3(x−4)x+3​​
  • \displaystyle f'(x) = \frac{5x+12}{2x \sqrt{x+3}}f′(x)=2xx+3​5x+12​
  • \displaystyle f'(x) = \frac{1}{4x\sqrt{x+3}}f′(x)=4xx+3​1​

Q6. Find the derivative of \displaystyle f(x) = \frac{\ln x}{\cos x}f(x)=cosxlnx​.

  • \displaystyle f'(x) = \frac{\cos x – \ln x\sin x}{x\sin^2 x}f′(x)=xsin2xcosx−lnxsinx
  • \displaystyle f'(x) = \frac{\ln x\sin x}{x\cos^2 x}f′(x)=xcos2xlnxsinx
  • \displaystyle f'(x) = \frac{\cos x + \ln x\sin x}{x\cos x}f′(x)=xcosxcosx+lnxsinx
  • \displaystyle f'(x) = \frac{\cos x + x\ln x\sin x}{x\cos^2 x}f′(x)=xcos2xcosx+xlnxsinx
  • \displaystyle f'(x) = \frac{\cos x – \ln x\sin x}{x\cos^2 x}f′(x)=xcos2xcosx−lnxsinx
  • \displaystyle f'(x) = \frac{(1 + \ln x)\sin x}{x\cos^2 x}f′(x)=xcos2x(1+lnx)sinx

Q7. Find the derivative of \displaystyle f(x) = \frac{ \sqrt[3]{x} – 4}{x^3}f(x)=x33x​−4​.

  • \displaystyle f'(x) = \frac{10\sqrt[3]{x} – 36}{3x^4}f′(x)=3x4103x​−36​
  • \displaystyle f'(x) = \frac{10\sqrt[3]{x} – 36}{x^4}f′(x)=x4103x​−36​
  • \displaystyle f'(x) = \frac{12 – 2\sqrt[3]{x}}{3x^4}f′(x)=3x412−23x​​
  • \displaystyle f'(x) = \frac{36 – 8\sqrt[3]{x}}{3x^4}f′(x)=3x436−83x​​
  • \displaystyle f'(x) = \frac{36 – 8\sqrt[3]{x}}{x^4}f′(x)=x436−83x​​
  • \displaystyle f'(x) = \frac{12 – 2\sqrt[3]{x}}{x^4}f′(x)=x412−23x​​

Q8. Find the derivative of f(x)=\sin^3 (x^3)f(x)=sin3(x3).

  • f'(x) = 9x^2 \sin^3(x^3) \cos^2 (x^3)f′(x)=9x2sin3(x3)cos2(x3)
  • f'(x) = 3 \sin^2(x^3) \cos(x^3)f′(x)=3sin2(x3)cos(x3)
  • f'(x) = 9x^2 \sin^2 (x^3) \cos (x^3)f′(x)=9x2sin2(x3)cos(x3)
  • f'(x) = 3\sin^2 (x^3)f′(x)=3sin2(x3)
  • f'(x) = 9x^2 \sin^2 (x^2) \cos (3x^2)f′(x)=9x2sin2(x2)cos(3x2)
  • f'(x) = 3\sin^2(3x^2)f′(x)=3sin2(3x2)

Q9. Find the derivative of f(x) = e^{-1/x^2}f(x)=e−1/x2.

  • \displaystyle f'(x) = \frac{2}{x^3} e^{-1/x^2}f′(x)=x32​e−1/x2
  • \displaystyle f'(x) = e^{2/x^3}f′(x)=e2/x3
  • \displaystyle f'(x) = e^{-2/x^3}f′(x)=e−2/x3
  • \displaystyle f'(x) = -\frac{1}{x^2} e^{-1/x^2}f′(x)=−x21​e−1/x2
  • \displaystyle f'(x) = \frac{1}{x^2} e^{-1/x^2}f′(x)=x21​e−1/x2
  • \displaystyle f'(x) = -\frac{2}{x^3} e^{-1/x^2}f′(x)=−x32​e−1/x2

Week 02: Calculus: Single Variable Part 2 – Differentiation Coursera Quiz Answers

Main Quiz 01

Q1. Use a linear approximation to estimate \sqrt[3]{67}367​. Round your answer to four decimal places.

Hint: remember that \sqrt[3]{64} = 4364​=4. You can check the accuracy of this approximation by noting that \sqrt[3]{67} \approx 4.0615367​≈4.0615.

Q2. Use a linear approximation to estimate the cosine of an angle of 66^\mathrm{o}66o. Round your answer to four decimal places.

Hint: remember that \displaystyle 60^\mathrm{o} = \frac{\pi}{3}60o=3π​, and hence \displaystyle 6^\mathrm{o} = \frac{\pi}{30}6o=30π​. You can check the accuracy of this approximation by noting that \cos 66^\mathrm{o} \approx 0.4067cos66o≈0.4067.

Q3. The golden ratio \displaystyle \varphi = \frac{1+\sqrt{5}}{2}φ=21+5​​ is a root of the polynomial x^2-x-1x2−x−1. If you use Newton’s method to estimate its value, what is the appropriate update rule for the sequence x_nxn​ ?

  • \displaystyle x_{n+1} = x_n + \frac{2x_n – 1}{x_n^2 – x_n – 1}xn+1​=xn​+xn2​−xn​−12xn​−1​
  • \displaystyle x_{n+1} = x_n – \frac{x_n^2 – x_n – 1}{2x_n – 1}xn+1​=xn​−2xn​−1xn2​−xn​−1​
  • \displaystyle x_{n+1} = x_n – \frac{2x_n – 1}{x_n^2 – x_n – 1}xn+1​=xn​−xn2​−xn​−12xn​−1​
  • \displaystyle x_{n+1} = \frac{x_n^2 – x_n – 1}{2x_n – 1}xn+1​=2xn​−1xn2​−xn​−1​
  • \displaystyle x_{n+1} = x_n + \frac{x_n^2 – x_n – 1}{2x_n – 1}xn+1​=xn​+2xn​−1xn2​−xn​−1​
  • \displaystyle x_{n+1} = \frac{2x_n – 1}{x_n^2 – x_n – 1}xn+1​=xn2​−xn​−12xn​−1​

Q4. To approximate \sqrt{10}10​ using Newton’s method, what is the appropriate update rule for the sequence x_nxn​ ?

  • \displaystyle x_{n+1} = \frac{x_n}{2} + \frac{5}{x_n}xn+1​=2xn​​+xn​5​
  • \displaystyle x_{n+1} = \frac{x_n}{2}xn+1​=2xn​​
  • \displaystyle x_{n+1} = x_n + \frac{2x_n}{x_n^2 – 10}xn+1​=xn​+xn2​−102xn​​
  • \displaystyle x_{n+1} = \frac{x_n}{2} – \frac{10}{x_n}xn+1​=2xn​​−xn​10​
  • \displaystyle x_{n+1} = \frac{x_n}{2} – \frac{5}{x_n}xn+1​=2xn​​−xn​5​
  • \displaystyle x_{n+1} = x_n – \frac{2x_n}{x_n^2 – 10}xn+1​=xn​−xn2​−102xn​​

Q5. You want to build a square pen for your new chickens, with an area of 1200\,\mathrm{ft}^21200ft2. Not having a calculator handy, you decide to use Newton’s method to approximate the length of one side of the fence. If your first guess is 30\,\mathrm{ft}30ft, what is the next approximation you will get?

  • 3535
  • 15.0515.05
  • 4040
  • -5−5
  • 3030
  • 30.0530.05

Q6. You are in charge of designing packaging materials for your company’s new product. The marketing department tells you that you must put them in a cube-shaped box. The engineering department says that you will need a box with a volume of 500\,\mathrm{cm}^3500cm3. What are the dimensions of the cubical box? Starting with a guess of 8\,\mathrm{cm}8cm for the length of the side of the cube, what approximation does one iteration of Newton’s method give you? Round your answer to two decimal places.

Practice Quiz 01

Q1. Without using a calculator, approximate 9.98^{98}9.9898. Here are some hints. First, 9.989.98 is close to 1010, and 10^{98}=1\,{\rm E}\,981098=1E98 in scientific notation. What does linear approximation give as an estimate when we decrease from 10^{98}1098 to 9.98^{98}9.9898?

  • 1.000\,{\rm E}\,981.000E98
  • 0.902\,{\rm E}\,980.902E98
  • 1.960\,{\rm E}\,981.960E98
  • 0.804\,{\rm E}\,980.804E98
  • 0.9804\,{\rm E}\,980.9804E98
  • 0.822\,{\rm E}\,980.822E98

Q2. A diving-board of length LL bends under the weight of a diver standing on its edge. The free end of the board moves down a distance

D = \frac{P}{3EI} L^3D=3EIPL3

where PP is the weight of the diver, EE is a constant of elasticity —that depends on the material from which the board is manufactured— and II is a moment of inertia. (These last two quantities will again make an appearance in Lectures 13 and 41, but do not worry about what exactly they mean now…)

Suppose our board has a length L = 2\,\mathrm{m}L=2m, and that it takes a deflection of D = 20\,\mathrm{cm}D=20cm under the weight of the diver. Use a linear approximation to estimate the deflection that it would take if its length was increased by 20\,\mathrm{cm}20cm

  • 20.3\,\mathrm{cm}20.3cm
  • 25.7\,\mathrm{cm}25.7cm
  • 22\,\mathrm{cm}22cm
  • 26\,\mathrm{cm}26cm
  • 24.8\,\mathrm{cm}24.8cm
  • 26.6\,\mathrm{cm}26.6cm

Main Quiz 02

Q1. You are given the position, velocity and acceleration of a particle at time t = 0t=0. The position is p(0) = 2p(0)=2, the velocity v(0) = 4v(0)=4, and the acceleration a(0) = 3a(0)=3. Using this information, which Taylor series should they use to approximate p(t)p(t), and what is the estimated value of p(4)p(4) using this approximation?

  • p(t) = 2 + 2t + 3 t^2 + O(t^3)p(t)=2+2t+3t2+O(t3), p(4) \simeq 58p(4)≃58.
  • p(t) = 2 + 4t + 6 t^2 + O(t^3)p(t)=2+4t+6t2+O(t3), p(4) \simeq 114p(4)≃114.
  • p(t) = 2 + 4t + 3 t^2 + O(t^3)p(t)=2+4t+3t2+O(t3), p(4) \simeq 66p(4)≃66.
  • \displaystyle p(t) = 2 + 2t + \frac{3}{2} t^2 + O(t^3)p(t)=2+2t+23​t2+O(t3), p(4) \simeq 34p(4)≃34.
  • \displaystyle p(t) = 2 + 4t + \frac{3}{2} t^2 + O(t^3)p(t)=2+4t+23​t2+O(t3), p(4) \simeq 42p(4)≃42.
  • p(t) = 2 + 2t + 6 t^2 + O(t^3)p(t)=2+2t+6t2+O(t3), p(4) \simeq 106p(4)≃106.

Q2. If a particle moves according to the position function s(t) = t^3-6ts(t)=t3−6t, what are its position, velocity and acceleration at t=3t=3 ?

  • s(3) = 9s(3)=9, v(3) = 21v(3)=21, a(3) = 18a(3)=18
  • s(3) = 9s(3)=9, v(3) = 21v(3)=21, a(3) = 36a(3)=36
  • s(3) = 21s(3)=21, v(3) = 18v(3)=18, a(3) = 6a(3)=6
  • s(3) = 9s(3)=9, v(3) = 18v(3)=18, a(3) = 18a(3)=18
  • s(3) = 9s(3)=9, v(3) = 21v(3)=21, a(3) = 9a(3)=9
  • s(3) = 21s(3)=21, v(3) = 18v(3)=18, a(3) = 18a(3)=18

Q3. If the position of a car at time tt is given by the formula p(t) = t^4 – 24t^2p(t)=t4−24t2, for which times tt is its velocity decreasing?

  • Never: the velocity always increases.
  • -\sqrt[3]{12} < t < \sqrt[3]{12}−312​<t<312​
  • t < -2t<−2
  • -2 < t < 2−2<t<2
  • -\sqrt{24} < t < \sqrt{24}−24​<t<24​
  • t > 2t>2

Q4. What is a formula for the second derivative of f(t) = t^2\sin 2tf(t)=t2sin2t? Use this formula to compute f”(\pi/2)f′′(π/2).

  • f”(t) = 4t\cos 2t + (2-4t^2)\sin 2tf′′(t)=4tcos2t+(2−4t2)sin2t, and f”(\pi/2) = -2\pif′′(π/2)=−2π
  • f”(t) = -4t^2\sin 2tf′′(t)=−4t2sin2t, and f”(\pi/2) =0f′′(π/2)=0
  • f”(t) = -8\sin 2tf′′(t)=−8sin2t, and f”(\pi/2) = 0f′′(π/2)=0
  • f”(t) = 8t\cos 2t -4t^2\sin 2tf′′(t)=8tcos2t−4t2sin2t, and f”(\pi/2) = -4\pif′′(π/2)=−4π
  • f”(t) = 4t\cos 2tf′′(t)=4tcos2t, and f”(\pi/2) = -2\pif′′(π/2)=−2π
  • f”(t) = 8t\cos 2t + (2-4t^2)\sin 2tf′′(t)=8tcos2t+(2−4t2)sin2t, and f”(\pi/2) = -4\pif′′(π/2)=−4π

Q5. Use a Taylor series expansion to compute f^{(3)}(0)f(3)(0) for f(x) = \sin^3 \left(\ln(1+x) \right)f(x)=sin3(ln(1+x)).

  • -3−3
  • 66
  • 1212
  • 33
  • 00
  • -6−6

Q6. What is the curvature of the graph of the function f(x) = -2\sin(x^2)f(x)=−2sin(x2) at the point (0,0)(0,0)?

  • 00
  • 22
  • \displaystyle \frac{1}{2}21​
  • 11
  • 44
  • -4−4

Main Quiz 03

Q1. Find all the local maxima and minima of the function y=x e^{-x^2}y=xex2.

  • The function has local minima at \displaystyle x = \frac{\sqrt{2}}{2}x=22​​ and \displaystyle x = -\frac{\sqrt{2}}{2}x=−22​​, and a local maximum at x = 0x=0.
  • The function has a local maximum at \displaystyle x = -\frac{\sqrt{2}}{2}x=−22​​, and a local minimum at \displaystyle x = \frac{\sqrt{2}}{2}x=22​​.
  • The function has local minima at \displaystyle x = \frac{\sqrt{2}}{2}x=22​​ and \displaystyle x = -\frac{\sqrt{2}}{2}x=−22​​, but no local maxima.
  • The function has a local maximum at \displaystyle x = \frac{\sqrt{2}}{2}x=22​​, and a local minimum at \displaystyle x = – \frac{\sqrt{2}}{2}x=−22​​.
  • The function has local maxima at \displaystyle x = \frac{\sqrt{2}}{2}x=22​​ and \displaystyle x = -\frac{\sqrt{2}}{2}x=−22​​, and a local minimum at x = 0x=0.
  • The function has local maxima at \displaystyle x = \frac{\sqrt{2}}{2}x=22​​ and \displaystyle x = -\frac{\sqrt{2}}{2}x=−22​​, but no local minima.

Q2. Which of the following statements is true about the function f(x) = e^{\sin(x^4)}\cos(x^2)f(x)=esin(x4)cos(x2) ?

  • Its Taylor series expansion about x=0x=0 is \displaystyle 1 – \frac{x}{3} + O(x^2)1−3x​+O(x2). Hence x=0x=0 is not a critical point of f(x)f(x).
  • Its Taylor series expansion about x=0x=0 is \displaystyle 1 + \frac{x^3}{2} + O(x^4)1+2x3​+O(x4). Hence x=0x=0 is a critical point of f(x)f(x) that is neither a local maximum nor a local minimum.
  • Its Taylor series expansion about x=0x=0 is \displaystyle 1 + \frac{x^4}{2} + O(x^5)1+2x4​+O(x5). Hence it has a local minimum at x=0x=0.
  • Its Taylor series expansion about x=0x=0 is \displaystyle 1 – \frac{x^2}{2} + O(x^5)1−2x2​+O(x5). Hence it has a local minimum at x=0x=0.
  • Its Taylor series expansion about x=0x=0 is \displaystyle 1 – \frac{x^2}{2} + O(x^5)1−2x2​+O(x5). Hence it has a local maximum at x=0x=0.
  • Its Taylor series expansion about x=0x=0 is \displaystyle 1 + \frac{x^4}{2} + O(x^5)1+2x4​+O(x5). Hence it has a local maximum at x=0x=0.

Q3. Use a Taylor series about x=0x=0 to determine whether the function f(x) = \sin^3(x^3)f(x)=sin3(x3) has a local maximum or local minimum at the origin.

  • x=0x=0 is a critical point of ff, but it is neither a local maximum nor a local minimum.
  • x=0x=0 is not a critical point of ff.
  • x=0x=0 is a local minimum of ff.
  • x=0x=0 is a local maximum of ff.

Q4. Find the location of the global maximum and minimum of f(x) = x^3-6x^2+1f(x)=x3−6x2+1 on the interval [-1,7][−1,7].

  • The global maximum is attained at x = 0x=0 and the global minimum at x = -1x=−1.
  • The global maximum is attained at x = 0x=0 and the global minimum at x = 4x=4.
  • The global maximum is attained at x = 7x=7, but there is no global minimum.
  • The global maximum is attained at x = 7x=7 and the global minimum at x = 4x=4.
  • The global maximum is attained at x = 7x=7 and the global minimum at x = -1x=−1.
  • The global maximum is attained at x = 0x=0, but there is no global minimum.

Q5. Which of the following statements are true for the function \displaystyle f(x) = x^3 + \frac{48}{x^2}f(x)=x3+x248​ ? Select all that apply.

  • x=-2x=−2 is the global maximum of ff in [-3, -1][−3,−1]
  • x=-1x=−1 is the global maximum of ff in [-3, -1][−3,−1]
  • x=2x=2 is the global maximum of ff in [-3, 3][−3,3]
  • x=1x=1 is the global minimum of ff in [1, 3][1,3]
  • x=2x=2 is the global minimum of ff in [1, 3][1,3]
  • x=1x=1 is the global maximum of ff in [1, 3][1,3]

Week 03: Calculus: Single Variable Part 2 – Differentiation Coursera Quiz Answers

Main Quiz 01

Q1. Use implicit differentiation to find \displaystyle \frac{dy}{dx}dxdy​ from the equation y^2 – y = \sin 2xy2−y=sin2x.

  • \displaystyle \frac{dy}{dx} = \frac{y^2 – y}{2\cos 2x}dxdy​=2cos2xy2−y
  • \displaystyle \frac{dy}{dx} = \frac{\sin 2x}{2y – 1}dxdy​=2y−1sin2x
  • \displaystyle \frac{dy}{dx} = \frac{2\cos 2x}{2y – 1}dxdy​=2y−12cos2x
  • \displaystyle \frac{dy}{dx} = \frac{2\cos 2x}{y^2 – y}dxdy​=y2−y2cos2x
  • \displaystyle \frac{dy}{dx} = \frac{2y – 1}{\sin 2x}dxdy​=sin2x2y−1​
  • \displaystyle \frac{dy}{dx} = \frac{2y – 1}{2\cos 2x}dxdy​=2cos2x2y−1​

Q2. Find the derivative \displaystyle \frac{dy}{dx}dxdy​ if xx and yy are related through xy = e^yxy=ey.

  • \displaystyle \frac{dy}{dx} = \frac{e^y + x}{y}dxdy​=yey+x
  • \displaystyle \frac{dy}{dx} = \frac{x – e^y}{y}dxdy​=yxey
  • \displaystyle \frac{dy}{dx} = \frac{y}{e^y + x}dxdy​=ey+xy
  • \displaystyle \frac{dy}{dx} = \frac{y}{x – e^y}dxdy​=xeyy
  • \displaystyle \frac{dy}{dx} = \frac{y}{e^y – x}dxdy​=eyxy
  • \displaystyle \frac{dy}{dx} = \frac{e^y – x}{y}dxdy​=yeyx

Q3. Use implicit differentiation to find \displaystyle \frac{dy}{dx}dxdy​ if \sin x = e^{-y\cos x}sinx=eycosx.

  • \displaystyle \frac{dy}{dx} = y\cos x – e^{y\cos x}\sin xdxdy​=ycosxeycosxsinx
  • \displaystyle \frac{dy}{dx} = \frac{y\sin x – e^{-y\cos x}}{\cos x}dxdy​=cosxysinxeycosx
  • \displaystyle \frac{dy}{dx} = y\tan x – e^{y\cos x}dxdy​=ytanxeycosx
  • \displaystyle \frac{dy}{dx} = -y\sin x + e^{-y\cos x}\cos xdxdy​=−ysinx+eycosxcosx
  • \displaystyle \frac{dy}{dx} = e^{-y\cos x}(\cos x – y\sin x)dxdy​=eycosx(cosxysinx)
  • \displaystyle \frac{dy}{dx} = \frac{y – e^{y\cos x}\tan x}{\sin x}dxdy​=sinxyeycosxtanx

Q4. Find the derivative \displaystyle \frac{dy}{dx}dxdy​ from the equation x\tan y – y^2\ln x = 4xtanyy2lnx=4.

  • \displaystyle \frac{dy}{dx} = \frac{-y^2}{x^2\sec^2 y}dxdy​=x2sec2yy2​
  • \displaystyle \frac{dy}{dx} = \tan y – \frac{y^2}{\sec^2 y}dxdy​=tany−sec2yy2​
  • \displaystyle \frac{dy}{dx} = \frac{x\tan y – y^2}{2xy\ln x – x^2\sec^2 y}dxdy​=2xylnxx2sec2yxtanyy2​
  • \displaystyle \frac{dy}{dx} = \frac{2xy\ln x – x^2\sec^2 y}{x\tan y – y^2}dxdy​=xtanyy22xylnxx2sec2y
  • \displaystyle \frac{dy}{dx} = \frac{y^2 – \tan y}{x^2\sec^2 y – 2xy\ln x}dxdy​=x2sec2y−2xylnxy2−tany
  • \displaystyle \frac{dy}{dx} = \frac{x\tan y}{2xy\ln x}dxdy​=2xylnxxtany

Q5. Model a hailstone as a round ball of radius RR. As the hailstone falls from the sky, its radius increases at a constant rate CC. At what rate does the volume VV of the hailstone change?

  • \displaystyle \frac{dV}{dt} = \frac{4}{3}\pi C R^3dtdV​=34​πCR3
  • \displaystyle \frac{dV}{dt} = \frac{4}{3}\pi C^3dtdV​=34​πC3
  • \displaystyle \frac{dV}{dt} = 8\pi C RdtdV​=8πCR
  • \displaystyle \frac{dV}{dt} = 4\pi C R^2dtdV​=4πCR2
  • \displaystyle \frac{dV}{dt} = \frac{4}{3}\pi R^3dtdV​=34​πR3
  • \displaystyle \frac{dV}{dt} = 4\pi R^2dtdV​=4πR2

Q6. The volume of a cubic box of side-length LL is V = L^3V=L3. How are the relative rates of change of LL and VV related?

  • \displaystyle \frac{dL}{L} = \frac{dV}{V}LdL​=VdV
  • \displaystyle \frac{dV}{V} = 3 L^3 \frac{dL}{L}VdV​=3L3LdL
  • \displaystyle \frac{dL}{L} = 3 \frac{dV}{V}LdL​=3VdV
  • \displaystyle \frac{dV}{V} = -\frac{dL}{L}VdV​=−LdL
  • \displaystyle \frac{dV}{V} = 0VdV​=0
  • \displaystyle \frac{dV}{V} = 3 \frac{dL}{L}VdV​=3LdL

Practice Quiz 01

Q1. Consider a box of height hh with a square base of side length LL. Assume that LL is increasing at a rate of 10\%10% per day, but hh is decreasing at a rate of 10\%10% per day. Use a linear approximation to find at what (approximate) rate the volume of the box changing?

Hint: consider the relative rate of change of the volume of the box.

Hint^\mathbf{2}2: in this case you can very easily calculate the exact rate of change —8.9%—, so using linearization might seem like overkill. However, if you set up things right, you don’t even need a calculator to find out the approximate rate of change! Do you see why?

  • Increasing at a rate of 5\%5% per day.
  • Increasing at a rate of 10\%10% per day.
  • Decreasing at a rate of 10\%10% per day.
  • Increasing at a rate of 2.5\%2.5% per day.
  • It does not change.
  • Decreasing at a rate of 5\%5% per day.

Q2. A large tank of oil is slowly leaking oil into a containment tank surrounding it. The oil tank is a vertical cylinder with a diameter of 10 meters. The containment tank has a square base with side length of 15 meters and tall vertical walls. The bottom of the oil tank and the bottom of the containment tank are concentric (the round base inside the square base). Denote by h_oho​ the height of the oil inside of the oil tank, and by h_chc​ the height of the oil in the containment tank. How are the rates of change of these two quantities related?

Q2. \displaystyle dh_c = -\frac{225-25\pi}{25\pi} dh_odhc​=−25π225−25πdho

dh_c = (25\pi – 225) dh_odhc​=(25π−225)dho

\displaystyle dh_c = -\frac{25\pi}{225} dh_odhc​=−22525πdho

\displaystyle dh_c = (225 – 25\pi) dh_odhc​=(225−25π)dho

\displaystyle dh_c = -\frac{25\pi}{225-25\pi} dh_odhc​=−225−25π25πdho

\displaystyle dh_c = -\frac{225}{25\pi} dh_odhc​=−25π225​dho

Q3. The stopping distance D_\mathrm{stop}Dstop​ is the distance traveled by a vehicle from the moment the driver becomes aware of an obstacle in the road until the car stops completely. This occurs in two phases.

The first one, the reaction phase, spans from the moment the driver sees the obstacle until he or she has completely depressed the brake pedal. This entails taking the decision to stop the vehicle, lifting the foot from the gas pedal and onto the brake pedal, and pressing the latter down its full distance to obtain maximum braking power. The amount of time necessary to do all this is called the reaction time t_\mathrm{react}treact​, and is independent of the speed at which the vehicle was traveling. Although this quantity varies from driver to driver, it is typically between 1.5\,\mathrm{s}1.5s and 2.5\,\mathrm{s}2.5s. For the purposes of this problem, we will use an average value of 2\,\mathrm{s}2s. The distance traversed by the vehicle in this time is unsurprisingly called reaction distance D_\mathrm{react}Dreact​ and is given by the formula

D_\mathrm{react} = v t_\mathrm{react}Dreact​=vtreact​

where vv is the initial speed of the vehicle.

In the braking phase, the vehicle decelerates and comes to a complete stop. The braking distance D_\mathrm{brake}Dbrake​ that the vehicle covers in this phase is proportional to the square of the initial speed of the vehicle:

D_\mathrm{brake} = \alpha v^2Dbrake​=αv2

The constant of proportionality \alphaα depends on the vehicle type and condition, as well as on the road conditions. Consider a typical value of 10^{-2}\,\mathrm{s^2/m}10−2s2/m.

If the initial speed of the vehicle is 108\,\mathrm{km/h} = 30\,\mathrm{m/s}108km/h=30m/s, what is the ratio between the relative rate of change of the stopping distance and the relative rate of change of the initial speed?

  • \displaystyle \frac{dD_\mathrm{stop} / D_\mathrm{stop}}{dv / v} = \frac{26}{23}dv/vdDstop​/Dstop​​=2326​
  • \displaystyle \frac{dD_\mathrm{stop} / D_\mathrm{stop}}{dv / v} = \frac{24}{23}dv/vdDstop​/Dstop​​=2324​
  • \displaystyle \frac{dD_\mathrm{stop} / D_\mathrm{stop}}{dv / v} = \frac{27}{23}dv/vdDstop​/Dstop​​=2327​
  • \displaystyle \frac{dD_\mathrm{stop} / D_\mathrm{stop}}{dv / v} = 1dv/vdDstop​/Dstop​​=1
  • \displaystyle \frac{dD_\mathrm{stop} / D_\mathrm{stop}}{dv / v} = \frac{28}{26}dv/vdDstop​/Dstop​​=2628​
  • \displaystyle \frac{dD_\mathrm{stop} / D_\mathrm{stop}}{dv / v} = \frac{25}{23}dv/vdDstop​/Dstop​​=2325​

Q4. Assume that you possess equal amounts of a product XX and YY, but you value them differently. Specifically, your utility function is of the form

U(X,Y) = C X^\alpha Y^\betaU(X,Y)=CXαYβ

for \alphaα, \betaβ, and CC positive constants. What is your marginal rate of substitution (MRS) of YY for XX?

Hint: recall that the MRS is equal to \displaystyle -\frac{dY}{dX}−dXdY​ along the indifference curve where UU is constant.

  • \displaystyle \frac{\beta}{\alpha}αβ
  • \displaystyle \frac{C}{\alpha\beta}αβC
  • \displaystyle \frac{\alpha}{\beta}βα
  • 11
  • \displaystyle C\frac{\beta}{\alpha}Cαβ
  • \displaystyle \frac{\alpha Y}{\beta X}βXαY

Main Quiz 02

Q1. Find the derivative of f(x) = (\cos x)^xf(x)=(cosx)x.

  • f'(x) = \ln\cos x – x\tan xf′(x)=lncosxxtanx
  • f'(x) = (\ln\cos x + x\cot x)(\cos x)^xf′(x)=(lncosx+xcotx)(cosx)x
  • f'(x) = (\ln\cos x – x\tan x)(\cos x)^{x-1}f′(x)=(lncosxxtanx)(cosx)x−1
  • f'(x) = – x (\cos x)^{x-1}\sin xf′(x)=−x(cosx)x−1sinx
  • f'(x) = (\ln\cos x – x\tan x)(\cos x)^xf′(x)=(lncosxxtanx)(cosx)x
  • f'(x) = -(\cos x)^{x-1}\sin xf′(x)=−(cosx)x−1sinx

Q2. Find the derivative of f(x) = (\ln x)^xf(x)=(lnx)x.

  • \displaystyle f'(x) = (\ln x)^x \left(\frac{1}{\ln x} + \ln(\ln x) \right)f′(x)=(lnx)x(lnx1​+ln(lnx))
  • \displaystyle f'(x) = \frac{1}{\ln x} + \ln(\ln x)f′(x)=lnx1​+ln(lnx)
  • \displaystyle f'(x) = (\ln x)^x \left(\frac{1}{e^x} + e^x\ln x \right)f′(x)=(lnx)x(ex1​+exlnx)
  • f'(x) = (\ln x)^x \ln(\ln x)f′(x)=(lnx)xln(lnx)
  • \displaystyle f'(x) = (\ln x)^x \frac{\ln x}{x}f′(x)=(lnx)xxlnx
  • \displaystyle f'(x) = \frac{1}{e^x} + e^x\ln xf′(x)=ex1​+exlnx

Q3. Find the derivative of f(x) = x^{\ln x}f(x)=xlnx.

  • f'(x) = 2\ln xf′(x)=2lnx
  • f'(x) = 2x^{\ln x} \ln xf′(x)=2xlnxlnx
  • f'(x) = x^{\ln x} \ln xf′(x)=xlnxlnx
  • f'(x) = x^{\ln(x) – 1} \ln xf′(x)=xln(x)−1lnx
  • f'(x) = 2x^{\ln(x) – 1} \ln xf′(x)=2xln(x)−1lnx
  • f'(x) = (\ln x + x) x^{\ln x}f′(x)=(lnx+x)xlnx

Q4. \displaystyle \lim_{x \to +\infty} \left( \frac{x+2}{x+3} \right)^{2x} =x→+∞lim​(x+3x+2​)2x=

Hint: write the fraction \displaystyle \frac{x+2}{x+3}x+3x+2​ as 1 + \text{something}1+something.

  • e^{3/2}e3/2
  • e^2e2
  • e^{-2}e−2
  • e^{4/3}e4/3
  • e^{2/3}e2/3
  • 11

Q5. \displaystyle \lim_{x \to 0^+} \left[ \ln(1+x) \right]^{x} =x→0+lim​[ln(1+x)]x=

  • 11
  • e^2e2
  • The limit does not exist.
  • 00
  • \sqrt{e}e
  • ee

Q6. \displaystyle \lim_{x \to 0} \left(1 + \arctan\frac{x}{2} \right)^{2/x} =x→0lim​(1+arctan2x​)2/x=

  • e^2e2
  • \sqrt{e}e
  • 00
  • 11
  • ee
  • +\infty+∞

Main Quiz 03

Q1. If f(x) = x^{2x}f(x)=x2x, compute \displaystyle \frac{df}{dx}dxdf​.

  • 2 \ln \left( x^{2x} – 2x \right)2ln(x2x−2x)
  • 2x^{2x}\left(1 + \ln x\right)2x2x(1+lnx)
  • 2 \left[ x^x – \ln(2x-1) + 1 \right]2[xx−ln(2x−1)+1]
  • x^{2x} \ln \left( x^{2x}+1 \right)x2xln(x2x+1)
  • x^2 + (e^x)^2x2+(ex)2
  • 2x^{2x-1}2x2x−1
  • x^{2\ln x} – 2x^2x2lnx−2x2
  • x^{2x} \ln 2xx2xln2x

Q2. Consider the function f(x) = \sqrt{3}\,x^2\,e^{1-x}f(x)=3​x2e1−x. Use the formula for curvature,

\kappa = \frac{|f”|}{ \left( 1+|f’|^2 \right)^{3/2}}κ=(1+∣f′∣2)3/2∣f′′∣​

to compute the curvature of the graph of ff at the point (1,\sqrt{3})(1,3​).

  • \displaystyle -\frac{\sqrt{3}}{9}−93​​
  • \displaystyle \frac{\sqrt{3}}{\left(\sqrt{1+\sqrt{3}}\right)^3}(1+3​​)33​​
  • \displaystyle \frac{\sqrt{3}}{64}643​​
  • \displaystyle \frac{2\sqrt{3}}{27}2723​​
  • \displaystyle \frac{x^2-4x+2}{2x-x^2}2xx2x2−4x+2​
  • \displaystyle \frac{2}{x} – 1x2​−1
  • \sqrt{3}3​
  • \displaystyle \frac{\sqrt{3}}{8}83​​

Q3. Assume that xx and yy are related by the equation y \ln x = e^{1-x} + y^3ylnx=e1−x+y3. Compute \displaystyle \frac{dy}{dx}dxdy​ evaluated at x = 1x=1.

  • -3−3
  • \displaystyle -\frac{1}{3}−31​
  • \displaystyle \frac{e^2}{6}6e2​
  • \displaystyle \frac{2 + e^2}{3}32+e2​
  • \displaystyle \frac{-2 + e^{-2}}{6}6−2+e−2​
  • 00
  • \displaystyle \frac{2-e^2}{3}32−e2​
  • \displaystyle \frac{1}{3}31​

Q4. Use the linear approximation of the function f(x) = \arctan\left(e^{3x}\right)f(x)=arctan(e3x) at x = 0x=0 to estimate the value of f(0.01)f(0.01).

Hint: remember that \displaystyle \frac{d}{dx}\arctan(x) = \frac{1}{1+x^2}dxd​arctan(x)=1+x21​.

  • \displaystyle \frac{\pi}{4} + \frac{3}{2}4π​+23​
  • \displaystyle \frac{\pi}{4} – \frac{3}{2}4π​−23​
  • \displaystyle \frac{\pi}{4} + \frac{3}{200}4π​+2003​
  • \displaystyle \frac{\pi}{4} – \frac{1}{20}4π​−201​
  • \displaystyle \frac{\pi}{4} + \frac{1}{20}4π​+201​
  • \displaystyle \frac{\pi}{4} – \frac{1}{200}4π​−2001​
  • \displaystyle \frac{\pi}{4} – \frac{3}{200}4π​−2003​
  • \displaystyle \frac{\pi}{4} + \frac{1}{200}4π​+2001​

Q5. A rectangular picture frame with total area 50000 \text{ cm}^250000 cm2 includes a border which is 1\text{ cm}1 cm thick at the top and the bottom and 5 \text{ cm}5 cm thick at the left and right side. What is the largest possible area of a picture that can be displayed in this frame?

  • 85\text{ cm} \times 470\text{ cm}85 cm×470 cm
  • 98\text{ cm} \times 490\text{ cm}98 cm×490 cm
  • 80\text{ cm} \times 460\text{ cm}80 cm×460 cm
  • 94\text{ cm} \times 475\text{ cm}94 cm×475 cm
  • 96\text{ cm} \times 485\text{ cm}96 cm×485 cm
  • 95\text{ cm} \times 499\text{ cm}95 cm×499 cm
  • 99\text{ cm} \times 495\text{ cm}99 cm×495 cm
  • 110\text{ cm} \times 450\text{ cm}110 cm×450 cm

Q6. Which of the following statements are true for the function \displaystyle f(x) = \frac{4}{x} + x^4f(x)=x4​+x4? In order to receive full credit for this problem, you must select all the true statements (there may be many) and none of the false statements.

1 point

  • The global minimum of ff for \displaystyle \frac{1}{2}\leq x \leq 221​≤x≤2 is at x = 1x=1.
  • ff is not differentiable at x=0x=0.
  • The global maximum of ff for \displaystyle -1\leq x \leq-\frac{1}{2}−1≤x≤−21​ is at x = -1x=−1.
  • The critical points of ff are at x = -1x=−1 and x = 1x=1.
  • The global maximum of ff for -2\leq x \leq -1−2≤x≤−1 is at x = -2x=−2.
  • The global maximum of ff for \displaystyle -\frac{3}{2}\leq x \leq 2−23​≤x≤2 is at x = -1x=−1.
  • The global minimum of ff for -1\leq x \leq 2−1≤x≤2 is at x = 1x=1.
  • The global minimum of ff for -2\leq x \leq 2−2≤x≤2 is at x = 1x=1.

Q7. To approximate \sqrt[3]{15}315​ (the cube root of 1515) using Newton’s method, what is the appropriate update rule for the sequence x_nxn​?

  • \displaystyle x_{n+1} = x_n + 3x_n^2xn+1​=xn​+3xn2​
  • \displaystyle x_{n+1} = x_n + \frac{5}{x_n^2}xn+1​=xn​+xn2​5​
  • \displaystyle x_{n+1} = \frac{2x_n}{3} – \frac{5}{x_n^2}xn+1​=32xn​​−xn2​5​
  • \displaystyle x_{n+1} = \frac{2x_n}{3} + \frac{5}{x_n^2}xn+1​=32xn​​+xn2​5​
  • \displaystyle x_{n+1} = x_n – \frac{3x_n^2}{x_n^3-15}xn+1​=xn​−xn3​−153xn2​​
  • \displaystyle x_{n+1} = \frac{4x_n}{3} – \frac{5}{x_n^2}xn+1​=34xn​​−xn2​5​
  • \displaystyle x_{n+1} = x_n + \frac{3x_n^2}{x_n^3-15}xn+1​=xn​+xn3​−153xn2​​
  • \displaystyle x_{n+1} = \frac{2}{3}x_nxn+1​=32​xn

Q8. Fill in the blank:

\ln^2(x+h) = \ln^2 x + \underline{\qquad}\cdot h + O(h^2)ln2(x+h)=ln2x+​⋅h+O(h2)

Here, \ln^2 xln2x means \left(\ln x\right)^2(lnx)2.

  • \displaystyle \frac{2}{x+h}\ln(x+h)x+h2​ln(x+h)
  • 2\ln x2lnx
  • \displaystyle \frac{2}{x}x2​
  • \displaystyle \ln \frac{2}{x}lnx2​
  • 22
  • \displaystyle \ln \frac{1}{x}lnx1​
  • \displaystyle 2\frac{\ln x}{x}2xlnx
  • 2\ln(x+h)2ln(x+h)

Q9. Recall that the kinetic energy of a body is

K = \frac{1}{2}mv^2K=21​mv2

where mm is mass and vv is velocity. Compute the relative rate of change of kinetic energy, \displaystyle\frac{dK}{K}KdK​, given that the relative rate of change of mass is -7−7 and the relative rate of change of velocity is +5+5.

  • \displaystyle\frac{dK}{K}=-2KdK​=−2
  • \displaystyle\frac{dK}{K}=-\frac{7}{2}KdK​=−27​
  • Not enough information is given to solve the problem.
  • \displaystyle\frac{dK}{K}=\frac{3}{2}KdK​=23​
  • \displaystyle\frac{dK}{K}=5KdK​=5
  • \displaystyle\frac{dK}{K}=-7KdK​=−7
  • \displaystyle\frac{dK}{K}=3KdK​=3
  • \displaystyle\frac{dK}{K}=-9KdK​=−9

Q10. Compute the ninth derivative of (x-3)^{10}(x−3)10 with respect to xx.

  • 10(x-3)^910(x−3)9
  • \displaystyle\frac{1}{9!}(x-3)^99!1​(x−3)9
  • 9!9!
  • 11
  • 9!(x-3)9!(x−3)
  • 10!10!
  • 10!(x-3)10!(x−3)
  • 00

More About This Course

Calculus is one of the greatest things that people have thought of. It helps us understand everything from the orbits of planets to the best size for a city to how often a heart beats.

This quick course covers the main ideas of Calculus with one variable, with a focus on understanding the ideas and how to use them. This course is perfect for students who are just starting out in engineering, the physical sciences, or the social sciences. The course is different because:

1) Taylor series and approximations are introduced and used from the start;

2) a new way of combining discrete and continuous forms of calculus is used;

3) the emphasis is on the ideas rather than the calculations; and

4) the course is taught in a clear, dynamic, and unified way.

In this second part, the second of five, we talk about derivatives, differentiation rules, linearization, higher derivatives, optimization, differentials, and differentiation operators.

SKILLS YOU WILL GAIN

  • Differential (Mathematics)
  • Newton’S Method
  • Linear Approximation
  • Differential Calculus
  • Derivative

Conclusion

Hopefully, this article will be useful for you to find all the Week, final assessment, and Peer Graded Assessment Answers of Calculus: Single Variable Part 2 – Differentiation Quiz of Coursera and grab some premium knowledge with less effort. If this article really helped you in any way about make sure to share it with your friends on social media and let them also know about this amazing training. You can also check out our other course Answers. So, be with us guys we will share a lot more free courses and their exam/quiz solutions also, and follow our Techno-RJ Blog for more updates.

713 thoughts on “Calculus: Single Variable Part 2 – Differentiation Coursera Quiz Answers 2022 | All Weeks Assessment Answers [💯Correct Answer]”

  1. Hello there! Quick question that’s totally off topic. Do you know how to make your site mobile friendly? My weblog looks weird when browsing from my iphone4. I’m trying to find a theme or plugin that might be able to correct this problem. If you have any recommendations, please share. Thanks!

    Reply
  2. I loved as much as you will receive carried out right here. The sketch is tasteful, your authored subject matter stylish. nonetheless, you command get got an nervousness over that you wish be delivering the following. unwell unquestionably come further formerly again as exactly the same nearly a lot often inside case you shield this increase.

    Reply
  3. Thanks for the sensible critique. Me & my neighbor were just preparing to do a little research about this. We got a grab a book from our area library but I think I learned more from this post. I am very glad to see such great information being shared freely out there.

    Reply
  4. Excellent blog you have here but I was wondering if you knew of any discussion boards that cover the same topics discussed here? I’d really like to be a part of group where I can get comments from other knowledgeable people that share the same interest. If you have any suggestions, please let me know. Kudos!

    Reply
  5. It¦s really a great and helpful piece of info. I am satisfied that you just shared this helpful info with us. Please stay us informed like this. Thanks for sharing.

    Reply
  6. Magnificent goods from you, man. I have understand your stuff previous to and you are just too great. I actually like what you have acquired here, really like what you’re stating and the way in which you say it. You make it enjoyable and you still care for to keep it sensible. I can not wait to read much more from you. This is actually a tremendous web site.

    Reply
  7. I’m not sure where you are getting your info, but great topic. I needs to spend some time learning much more or understanding more. Thanks for excellent information I was looking for this information for my mission.

    Reply
  8. hello there and thanks to your info – I have certainly picked up something new from proper here. I did on the other hand expertise several technical issues the use of this website, as I skilled to reload the site lots of occasions prior to I may get it to load properly. I were wondering in case your web host is OK? Now not that I’m complaining, however sluggish loading instances instances will often affect your placement in google and can injury your high-quality ranking if ads and ***********|advertising|advertising|advertising and *********** with Adwords. Anyway I am adding this RSS to my e-mail and could glance out for a lot extra of your respective fascinating content. Ensure that you replace this again soon..

    Reply
  9. Good day! This post could not be written any better! Reading this post reminds me of my previous room mate! He always kept chatting about this. I will forward this page to him. Fairly certain he will have a good read. Thank you for sharing!

    Reply
  10. Hello There. I found your blog using msn. That is a really neatly written article. I’ll make sure to bookmark it and come back to read more of your useful information. Thanks for the post. I will definitely comeback.

    Reply
  11. Oh my goodness! an incredible article dude. Thanks Nevertheless I am experiencing problem with ur rss . Don’t know why Unable to subscribe to it. Is there anybody getting an identical rss downside? Anybody who knows kindly respond. Thnkx

    Reply
  12. It?¦s really a cool and helpful piece of information. I am glad that you just shared this useful information with us. Please keep us informed like this. Thank you for sharing.

    Reply
  13. The following time I learn a weblog, I hope that it doesnt disappoint me as a lot as this one. I imply, I do know it was my option to learn, however I really thought youd have something interesting to say. All I hear is a bunch of whining about one thing that you could fix if you werent too busy searching for attention.

    Reply
  14. Superb blog! Do you have any helpful hints for aspiring writers? I’m hoping to start my own blog soon but I’m a little lost on everything. Would you advise starting with a free platform like WordPress or go for a paid option? There are so many options out there that I’m completely overwhelmed .. Any recommendations? Many thanks!

    Reply
  15. Woah! I’m really digging the template/theme of this site. It’s simple, yet effective.
    A lot of times it’s very difficult to get that “perfect balance”
    between usability and visual appearance. I must say you’ve done a
    fantastic job with this. Additionally, the blog loads super quick for me on Chrome.
    Exceptional Blog!

    Reply
  16. Have you ever considered publishing an e-book or guest authoring on other blogs?
    I have a blog centered on the same subjects you discuss
    and would love to have you share some stories/information. I know my audience would value your work.
    If you’re even remotely interested, feel free to send me an e-mail.

    Reply
  17. Быстромонтажные здания: финансовая выгода в каждом кирпиче!
    В современном мире, где минуты – капитал, строения быстрого монтажа стали реальным спасением для бизнеса. Эти новаторские строения объединяют в себе надежность, экономичное использование ресурсов и быстрое строительство, что позволяет им превосходным выбором для различных бизнес-проектов.
    [url=https://bystrovozvodimye-zdanija-moskva.ru/]Быстровозводимые здания[/url]
    1. Скорость строительства: Часы – ключевой момент в финансовой сфере, и скоро возводимые строения позволяют существенно сократить сроки строительства. Это значительно ценится в постановках, когда необходимо оперативно начать предпринимательскую деятельность и начать монетизацию.
    2. Экономия: За счет улучшения процессов изготовления элементов и сборки на объекте, финансовые издержки на быстровозводимые объекты часто бывает менее, по сопоставлению с традиционными строительными задачами. Это позволяет сэкономить средства и получить более высокую рентабельность инвестиций.
    Подробнее на [url=https://xn--73-6kchjy.xn--p1ai/]https://scholding.ru[/url]
    В заключение, сооружения быстрого монтажа – это лучшее решение для коммерческих задач. Они обладают ускоренную установку, бюджетность и долговечность, что придает им способность превосходным выбором для профессионалов, готовых начать прибыльное дело и получать прибыль. Не упустите возможность сэкономить время и средства, идеальные сооружения быстрого монтажа для вашего следующего делового мероприятия!

    Reply
  18. Скорозагружаемые здания: коммерческая выгода в каждом кирпиче!
    В современном мире, где время имеет значение, экспресс-конструкции стали настоящим выходом для экономической сферы. Эти новейшие строения обладают устойчивость, экономичность и быстрый монтаж, что дает им возможность лучшим выбором для разнообразных предпринимательских инициатив.
    [url=https://bystrovozvodimye-zdanija-moskva.ru/]Стоимость постройки быстровозводимого здания[/url]
    1. Срочное строительство: Секунды – самое ценное в коммерции, и скоростроительные конструкции позволяют существенно сократить сроки строительства. Это особенно выгодно в моменты, когда срочно требуется начать бизнес и начать получать прибыль.
    2. Экономия средств: За счет совершенствования производственных процессов элементов и сборки на площадке, финансовые издержки на быстровозводимые объекты часто снижается, по сопоставлению с традиционными строительными задачами. Это способствует сбережению денежных ресурсов и достичь более высокой инвестиционной доходности.
    Подробнее на [url=https://xn--73-6kchjy.xn--p1ai/]http://www.scholding.ru[/url]
    В заключение, объекты быстрого возвода – это превосходное решение для проектов любого масштаба. Они комбинируют в себе скорость строительства, финансовую выгоду и устойчивость, что позволяет им оптимальным решением для фирм, активно нацеленных на скорый старт бизнеса и получать доход. Не упустите шанс на сокращение времени и издержек, превосходные экспресс-конструкции для ваших будущих инициатив!

    Reply
  19. I’ve been surfing online more than three hours nowadays, but I by no means discovered any attention-grabbing article like yours. It?¦s beautiful price sufficient for me. In my view, if all web owners and bloggers made good content material as you probably did, the internet will probably be a lot more useful than ever before.

    Reply
  20. I have been browsing online more than three hours these days, yet I never discovered any interesting article like yours. It’s lovely price sufficient for me. In my view, if all website owners and bloggers made excellent content material as you probably did, the net might be much more useful than ever before.

    Reply
  21. консультации юриста бесплатно для всех вопросов о праве|юридическое обслуживание бесплатно на разнообразные темы
    Юридическая консультация бесплатно для граждан и предприятий по разнообразным вопросам права от юридическая консультация без оплаты: качественное решение вопросов|Получи бесплатное консультирование от опытных юристов по любым проблемам
    Бесплатная юридическая помощь при конфликтах с соседями
    бесплатная консультация юриста горячая линия http://www.konsultaciya-yurista-499.ru/.

    Reply
  22. Boostaro increases blood flow to the reproductive organs, leading to stronger and more vibrant erections. It provides a powerful boost that can make you feel like you’ve unlocked the secret to firm erections

    Reply
  23. Neotonics is a dietary supplement that offers help in retaining glowing skin and maintaining gut health for its users. It is made of the most natural elements that mother nature can offer and also includes 500 million units of beneficial microbiome.

    Reply
  24. Dentitox Pro is a liquid dietary solution created as a serum to support healthy gums and teeth. Dentitox Pro formula is made in the best natural way with unique, powerful botanical ingredients that can support healthy teeth.

    Reply
  25. Claritox Pro™ is a natural dietary supplement that is formulated to support brain health and promote a healthy balance system to prevent dizziness, risk injuries, and disability. This formulation is made using naturally sourced and effective ingredients that are mixed in the right way and in the right amounts to deliver effective results.

    Reply
  26. Metabo Flex is a nutritional formula that enhances metabolic flexibility by awakening the calorie-burning switch in the body. The supplement is designed to target the underlying causes of stubborn weight gain utilizing a special “miracle plant” from Cambodia that can melt fat 24/7.

    Reply
  27. Gorilla Flow is a non-toxic supplement that was developed by experts to boost prostate health for men. It’s a blend of all-natural nutrients, including Pumpkin Seed Extract Stinging Nettle Extract, Gorilla Cherry and Saw Palmetto, Boron, and Lycopene.

    Reply
  28. Manufactured in an FDA-certified facility in the USA, EndoPump is pure, safe, and free from negative side effects. With its strict production standards and natural ingredients, EndoPump is a trusted choice for men looking to improve their sexual performance.

    Reply
  29. Glucofort Blood Sugar Support is an all-natural dietary formula that works to support healthy blood sugar levels. It also supports glucose metabolism. According to the manufacturer, this supplement can help users keep their blood sugar levels healthy and within a normal range with herbs, vitamins, plant extracts, and other natural ingredients.

    Reply
  30. While Inchagrow is marketed as a dietary supplement, it is important to note that dietary supplements are regulated by the FDA. This means that their safety and effectiveness, and there is 60 money back guarantee that Inchagrow will work for everyone.

    Reply
  31. Introducing FlowForce Max, a solution designed with a single purpose: to provide men with an affordable and safe way to address BPH and other prostate concerns. Unlike many costly supplements or those with risky stimulants, we’ve crafted FlowForce Max with your well-being in mind. Don’t compromise your health or budget – choose FlowForce Max for effective prostate support today!

    Reply
  32. TerraCalm is an antifungal mineral clay that may support the health of your toenails. It is for those who struggle with brittle, weak, and discoloured nails. It has a unique blend of natural ingredients that may work to nourish and strengthen your toenails.

    Reply
  33. I have not checked in here for a while as I thought it was getting boring, but the last several posts are good quality so I guess I will add you back to my everyday bloglist. You deserve it my friend 🙂

    Reply
  34. Cortexi is an effective hearing health support formula that has gained positive user feedback for its ability to improve hearing ability and memory. This supplement contains natural ingredients and has undergone evaluation to ensure its efficacy and safety. Manufactured in an FDA-registered and GMP-certified facility, Cortexi promotes healthy hearing, enhances mental acuity, and sharpens memory.

    Reply
  35. Glucofort Blood Sugar Support is an all-natural dietary formula that works to support healthy blood sugar levels. It also supports glucose metabolism. According to the manufacturer, this supplement can help users keep their blood sugar levels healthy and within a normal range with herbs, vitamins, plant extracts, and other natural ingredients. https://glucofortbuynow.us/

    Reply
  36. Red Boost is a male-specific natural dietary supplement. Nitric oxide is naturally increased by it, which enhances blood circulation all throughout the body. This may improve your general well-being. Red Boost is an excellent option if you’re trying to assist your circulatory system. https://redboostbuynow.us/

    Reply
  37. Fantastic article! 🌟 The information is presented clearly, and I’m curious if you plan to include more images in your upcoming pieces. It could make the content even more captivating. 🖼️

    Reply
  38. 💫 Wow, blog ini seperti roket meluncur ke alam semesta dari kegembiraan! 💫 Konten yang mengagumkan di sini adalah perjalanan rollercoaster yang mendebarkan bagi imajinasi, memicu ketertarikan setiap saat. 🌟 Baik itu gayahidup, blog ini adalah sumber wawasan yang inspiratif! #PetualanganMenanti 🚀 ke dalam petualangan mendebarkan ini dari penemuan dan biarkan pemikiran Anda terbang! 🌈 Jangan hanya mengeksplorasi, rasakan kegembiraan ini! 🌈 Pikiran Anda akan bersyukur untuk perjalanan menyenangkan ini melalui ranah keajaiban yang penuh penemuan! 🌍

    Reply
  39. EndoPump is a dietary supplement for men’s health. This supplement is said to improve the strength and stamina required by your body to perform various physical tasks. Because the supplement addresses issues associated with aging, it also provides support for a variety of other age-related issues that may affect the body. https://endopumpbuynow.us/

    Reply
  40. Claritox Pro™ is a natural dietary supplement that is formulated to support brain health and promote a healthy balance system to prevent dizziness, risk injuries, and disability. This formulation is made using naturally sourced and effective ingredients that are mixed in the right way and in the right amounts to deliver effective results. https://claritoxprobuynow.us/

    Reply
  41. Cortexi is a completely natural product that promotes healthy hearing, improves memory, and sharpens mental clarity. Cortexi hearing support formula is a combination of high-quality natural components that work together to offer you with a variety of health advantages, particularly for persons in their middle and late years. https://cortexibuynow.us/

    Reply
  42. Unlock the incredible potential of Puravive! Supercharge your metabolism and incinerate calories like never before with our unique fusion of 8 exotic components. Bid farewell to those stubborn pounds and welcome a reinvigorated metabolism and boundless vitality. Grab your bottle today and seize this golden opportunity! https://puravivebuynow.us/

    Reply
  43. Island Post is the website for a chain of six weekly newspapers that serve the North Shore of Nassau County, Long Island published by Alb Media. The newspapers are comprised of the Great Neck News, Manhasset Times, Roslyn Times, Port Washington Times, New Hyde Park Herald Courier and the Williston Times. Their coverage includes village governments, the towns of Hempstead and North Hempstead, schools, business, entertainment and lifestyle. https://islandpost.us/

    Reply