Data Science Methodology Cognitive Class Course Exam Answer

Hello Learners, Today, we are going to share Data Science Methodology Cognitive Class Course Exam Answer launched by IBM. This certification course is totally free of cost✅✅✅ for you and available on Cognitive Class platform.

Here, you will find Data Science Methodology Exam Answers in Bold Color which are given below.

These answers are updated recently and are 100% correctanswers of all modules and final exam answers of Data Science Methodology from Cognitive Class Certification Course.

Course NameData Science Methodology
OrganizationIBM
SkillOnline Education
LevelBeginner
LanguageEnglish
PriceFree
CertificateYes

For participating in quiz/exam, first you will need to enroll yourself in the given link mention below and learn Data Science Methodology launched by IBM. Interested students must enroll for this courses and grab this golden opportunity which will definitely enhance their technical skills and you will learn more things in brief.

Link for Course Enrollment: Enroll Now

Use “Ctrl+F” To Find Any Questions Answer. & For Mobile User, You Just Need To Click On Three dots In Your Browser & You Will Get A “Find” Option There. Use These Option to Get Any Random Questions Answer.

Data Science Methodology Cognitive Class Course Exam Answer

Module 1 – From Problem to Approach

Question 1: Select the correct statement.

  • A methodology is an application for a computer program.
  • A methodology is a set of instructions.
  • A methodology is a system of methods used in a particular area of study or activity.
  • All of the above statements are correct.

Question 2: Select the correct statement.

  • The data science methodology described in this course is only used by certified data scientists.
  • The data science methodology described in this course is outlined by John Rollins from IBM.
  • The data science methodology described in this course is limited to IBM.
  • None of the above statements are correct.

Question 3: Select the correct statement.

  • The first stage of the data science methodology is data understanding.
  • The first stage of the data science methodology is modeling.
  • The first stage of the data science methodology is business understanding.
  • The first stage of the data science methodology is data collection.

Module 2 – From Requirements to Collection

Question 1: Select the correct statement.

  • If a problem is a dish, then data is an answer.
  • If a problem is a dish, then data is an ingredient.
  • If a problem is a dish, then data is a list of information.
  • None of the above statements are correct.

Question 2: Select the correct statement.

  • A data requirement is never refined.
  • A data requirement is set in stone.
  • A data requirement is the initial set of ingredients.
  • None of the above statements are correct.

Question 3: Select the correct statement.

  • Data scientists determine how to prepare the data.
  • Data scientists identify the data that is required for data modeling.
  • Data scientists determine how to collect the data.
  • All of the above.

Module 3 – From Understanding to Preparation

Question 1: Select the correct statement about data preparation.

  • Data preparation involves properly formatting the data.
  • Data preparation involves correcting invalid values and addressing outliers.
  • Data preparation involves removing duplicate data.
  • Data preparation involves addressing missing values.
  • All of the above statements are correct.

Question 2: Select the correct statement about data understanding.

  • Data understanding encompasses removing redundant data.
  • Data understanding encompasses all activities related to constructing the dataset.
  • Data understanding encompasses sorting the data.
  • All of the above statements about data understanding are correct.

Question 3: Select the correct statement about what data scientists and database administrators (DBAs) do during data preparation.

  • During data preparation, data scientists and DBAs identify missing data.
  • During data preparation, data scientists and DBAs determine the timing of events.
  • During data preparation, data scientists and DBAs aggregate the data and merge them from different sources.
  • During data preparation, data scientists and DBAs define the variables to be used in the model.
  • All of the above statements are correct.

Module 4 – From Modeling to Evaluation

Question 1: Select the correct statement.

  • A training set is used for data visualization.
  • A training set is used for predictive modeling.
  • A training set is used for statistical analysis.
  • A training set is used for descriptive modeling.
  • None of the above statements are correct.

Question 2: A statistician calls a false-negative, a type I error, and a false-positive, a type II error.

  • True
  • False

Question 3: Select the correct statement about model evaluation.

  • Model evaluation can include statistical significance testing.
  • Model evaluation includes ensuring that the data are properly handled and interpreted.
  • Model evaluation includes ensuring the model is designed as intended.
  • Model evaluation includes ensuring that the model is working as intended.
  • All of the above statements are correct.

Module 5 – From Deployment to Feedback

Question 1: The final stages of the data science methodology are an iterative cycle between modelling, evaluation, deployment, and feedback.

  • True
  • False

Question 2: What is model evaluation used for?

  • Assessing the model after getting deployed.
  • Assessing the model before getting deployed.
  • Determining if the model is good for other uses.
  • All of the above.
  • None of the above.

Question 3: Select the correct statement about the feedback stage of the data science methodology.

  • Feedback is essential to the long term viability of the model.
  • Feedback is not helpful and gets in the way.
  • Feedback is not required once launched.
  • None of the above statements are correct.

Data Science Methodology Final Exam Answers

Question 1: Select the correct sentence about the data science methodology explained in the course.

  • Data science methodology is not an iterative process – one does not go back and forth between methodological steps.
  • Data science methodology is a specific strategy that guides processes and activities relating to data science only for text analytics.
  • Data science methodology always starts with data collection.
  • Data science methodology provides the data scientist with a framework for how to proceed to obtain answers.
  • Data science methodology depends on a specific set of technologies or tools.

Question 2: Business understanding is important in the data science methodology stage. Why?

  • Because it shapes the rest of the methodological steps.
  • Because it clearly defines the problem and the needs from a business perspective.
  • Because it ensures that the work generates the intended solution.
  • Because it involves domain expertise.
  • All of the above.

Question 3: A data scientist determines that building a recommender system is the solution for a particular business problem at hand. What stage of the data science methodology does this represent?

  • Modeling
  • Deployment
  • Model evaluation
  • Analytic approach
  • Data understanding

Question 4: Which of the following represent the two important characteristics of the data science methodology?

  • It is a highly iterative process and immediately ends when the model is deployed.
  • It is not an iterative process and it never ends.
  • It has no endpoint because data collection occurs before identifying the data requirements.
  • It immediately ends when the model is deployed because no feedback is required.
  • It is a highly iterative process and it never ends.

Question 5: What do data scientists typically use for exploratory analysis of data and to get acquainted with them?

  • They use support vector machines and neural networks as feature extraction techniques.
  • They begin with regression, classification, or clustering.
  • They use deep learning.
  • They use descriptive statistics and data visualization techniques.
  • All of the above.

Question 6: Select the correct statement about data preparation.

  • Data preparation cannot be accelerated through automation.
  • Data preparation involves dealing with missing improperly coded data and can include using text analysis to structure unstructured or semi-structured text data.
  • Data preparation is typically the least time-consuming methodological step.
  • All of the above.
  • None of the above.

Question 7: Which statement best describes the modeling stage of the data science methodology.

  • Modeling is followed by the analytic approach stage.
  • Modeling may require testing multiple algorithms and parameters.
  • Modeling is always based on predictive models.
  • Modeling always uses training and test sets.
  • All of the above.

Question 8: Which of the following statements best describe the model evaluation stage of the data science methodology?

  • Model evaluation may entail statistical significance tests, particularly when additional proof is necessary to justify some of the emerging recommendations.
  • Model evaluation is important because it examines how well the model performs in the context of the business problem.
  • Model evaluation entails computing graphs and/or various diagnostic measures such as a confusion matrix.
  • Model evaluation is done using a test set if the model is a predictive one.
  • All of the above.

Question 9: What does deploying a model into production represent?

  • It represents the end of the iterative process that includes feedback, model refinement, and redeployment.
  • It represents the beginning of an iterative process that includes feedback, model refinement and redeployment and requires the input of additional groups, such as marketing personnel and business owners.
  • It represents the final data science product.
  • None of the above.

Question 10: A data scientist, John, was asked to help reduce readmission rates at a local hospital. After some time, John provided a model that predicted which patients were more likely to be readmitted to the hospital and declared that his work was done. Which of the following best describes this scenario?

  • John only provided one model as a solution and he should have provided multiple models.
  • The scenario is already optimal.
  • Even though John only submitted one solution, it might be a good one. However, John needed feedback on his model from the hospital to confirm that his model was able to address the problem appropriately and sufficiently.
  • John’s mistake is that he lied in the analytic approach step of the data science methodology.
  • John still needed to collect more data.

Question 11: A car company asked a data scientist to determine what type of customers are more likely to purchase their vehicles. However, the data comes from several sources and is in a relatively “raw format”. What kind of processing can the data scientist perform on the data to prepare it for modeling?

  • Feature engineering.
  • Transforming the data into more useful variables.
  • Combining the data from the various sources.
  • Addressing missing/invalid values.
  • All of the above.

Question 12: High-performance, massively parallel systems can be used to facilitate the following methodological steps.

  • Data preparation and Modeling.
  • Modeling only.
  • Deployment.
  • Business understanding.
  • All of the above.

Question 13: Data scientists may use either a “top-down” approach or a “bottom-up” approach to data science. These two approaches refer to:

  • “Top-down” approach – the data, when sorted, is modeled from the “top” of the data towards the “bottom”. “Bottom-up” approach – the data is modeled from the “bottom” of the data to the “top”.
  • “Top-down” approach – models are fit before the data is explored. “Bottom-up” approach – data is explored, and then a model is fit.
  • “Top-down” approach – first defining a business problem then analyzing the data to find a solution. “Bottom-up” approach – starting with the data, and then coming up with a business problem based on the data.
  • “Top-down” approach – using massively parallel, warehouses with huge data volumes as the data source. “Bottom-up” approach – using a sample of small data before using large data.
  • All of the above.

Question 14: The following are all examples of rapidly evolving technologies that affect data science methodology EXCEPT for?

  • Data sampling.
  • Automation.
  • Text analysis.
  • Platform growth.
  • In-database analytics.

Question 15: Data understanding involves all of the following EXCEPT for?

  • Discovering initial insights about the data.
  • Visualizing the data.
  • Assessing data quality.
  • Understanding the content of the data.
  • Gathering and analyzing feedback for assessment of the model’s performance.

Question 16: For predictive models, a test set, which is similar to – but independent of – the training set, is used to determine how well the model predicts outcomes. This is an example of what step in the methodology?

  • Data preparation.
  • Deployment.
  • Analytic approach.
  • Model evaluation.
  • Data requirements.

Question 17: “When ______ data is available (such as customer call center logs or physicians’ notes in unstructured or semi-structured format), _______ analytics can be useful in deriving new structured variables to enrich the set predictors and improve model accuracy.” Which of the following most appropriately fills in the blanks?

  • text; text
  • market; statistical
  • big; digital
  • highly structured; text
  • text; predictive

Question 18: Typically in a predictive model, the training set and the test set are very different and independent, such as having a different set of variables or structure.

  • True
  • False

Question 19: Data scientists may frequently return to a previous stage to make adjustments, as they learn more about the data and the modeling.

  • True
  • False

Question 20: Why should data scientists maintain continuous communication with business sponsors throughout a project?

  • So that business sponsors can provide domain expertise.
  • So that business sponsors can ensure the work remains on track to generate the intended solution.
  • So that business sponsors can review intermediate findings.
  • All of the above.
  • None of the above.

Conclusion

Hopefully, this article will be useful for you to find all the Modules and Final Quiz Answers of Data Science Methodology of Cognitive Class and grab some premium knowledge with less effort. If this article really helped you in any way then make sure to share it with your friends on social media and let them also know about this amazing training. You can also check out our other course Answers. So, be with us guys we will share a lot more free courses and their exam/quiz solutions also and follow our Techno-RJ Blog for more updates.

FAQs

Can I get a Printable Certificate?

Yes, you will receive a Data Science Methodology Certificate of Learning after successful completion of course. You can download a printed certificate or share completion certificates with others and add them to your LinkedIn profile.

Why should you choose online courses?

You should go to an online certification course to get credentials that can help you in your work. It also helps you to share your skills with the employer. These certificates are an investment in building your business. And the important thing you can access these courses anytime and multiple times.

Is this course is free?

Yes Data Science Methodology Course is totally free for you. The only thing is needed i.e. your dedication towards learning this course.

150 thoughts on “Data Science Methodology Cognitive Class Course Exam Answer”

  1. I’m extremely impressed together with your writing abilities and also with the format in your weblog. Is that this a paid subject or did you modify it yourself? Anyway keep up the nice quality writing, it’s rare to peer a nice weblog like this one today..

    Reply
  2. Unquestionably believe that which you stated. Your favorite reason seemed to be on the internet the easiest thing to be aware of. I say to you, I certainly get annoyed while people consider worries that they just do not know about. You managed to hit the nail upon the top and also defined out the whole thing without having side effect , people can take a signal. Will likely be back to get more. Thanks

    Reply
  3. Fantastic items from you, man. I have have in mind your stuff previous to and you’re simply too fantastic. I actually like what you have received right here, certainly like what you’re saying and the way by which you say it. You are making it enjoyable and you continue to take care of to keep it sensible. I cant wait to learn much more from you. This is really a terrific website.

    Reply
  4. I found your blog site on google and test just a few of your early posts. Proceed to maintain up the excellent operate. I just further up your RSS feed to my MSN Information Reader. In search of forward to studying more from you later on!…

    Reply
  5. I discovered your blog site on google and check a few of your early posts. Continue to keep up the very good operate. I just additional up your RSS feed to my MSN News Reader. Seeking forward to reading more from you later on!…

    Reply
  6. The next time I read a blog, I hope that it doesnt disappoint me as much as this one. I mean, I know it was my choice to read, but I actually thought youd have something interesting to say. All I hear is a bunch of whining about something that you could fix if you werent too busy looking for attention.

    Reply
  7. I would like to thnkx for the efforts you have put in writing this blog. I am hoping the same high-grade blog post from you in the upcoming as well. In fact your creative writing abilities has inspired me to get my own blog now. Really the blogging is spreading its wings quickly. Your write up is a good example of it.

    Reply
  8. I’m not that much of a online reader to be honest but your blogs really nice, keep it up! I’ll go ahead and bookmark your website to come back down the road. Many thanks

    Reply
  9. I’m not that much of a internet reader to be honest but your sites really nice, keep it up! I’ll go ahead and bookmark your site to come back in the future. All the best

    Reply
  10. Hi , I do believe this is an excellent blog. I stumbled upon it on Yahoo , i will come back once again. Money and freedom is the best way to change, may you be rich and help other people.

    Reply
  11. You could certainly see your enthusiasm in the work you write. The world hopes for even more passionate writers like you who aren’t afraid to mention how they believe. All the time follow your heart.

    Reply
  12. Hi, i read your blog occasionally and i own a similar one and i was just wondering if you get a lot of spam feedback? If so how do you protect against it, any plugin or anything you can suggest? I get so much lately it’s driving me mad so any help is very much appreciated.

    Reply
  13. whoah this blog is excellent i love reading your posts. Keep up the good work! You know, a lot of people are searching around for this information, you can help them greatly.

    Reply
  14. An fascinating dialogue is price comment. I feel that you need to write more on this matter, it may not be a taboo subject but generally people are not enough to talk on such topics. To the next. Cheers

    Reply
  15. Having read this I thought it was very informative. I appreciate you taking the time and effort to put this article together. I once again find myself spending way to much time both reading and commenting. But so what, it was still worth it!

    Reply
  16. I love your blog.. very nice colors & theme. Did you create this website yourself or did you hire someone to do it for you? Plz respond as I’m looking to design my own blog and would like to find out where u got this from. thanks a lot

    Reply

Leave a Comment

Ads Blocker Image Powered by Code Help Pro

Ads Blocker Detected!!!

We have detected that you are using extensions to block ads. Please support us by disabling these ads blocker🙏.

Powered By
Best Wordpress Adblock Detecting Plugin | CHP Adblock