Hello Peers, Today we will share all week’s assessment and quiz answers of the Introduction to Mathematical Thinking course launched by Coursera, free of cost✅✅✅. This is a certification course for every interested student.
If you didn’t find this course for free, you can apply for financial ads to get this course for free. Click on the below link to for detailed process and Coursera financial Aid Answers.
Check out this article – “How to Apply for Financial Ads?”
- About The Coursera
- About Introduction to Mathematical Thinking Course
- Introduction to Mathematical Thinking Quiz Answers
- Week 1: Introduction to Mathematical Thinking Coursera Quiz Answers
- Week 2: Introduction to Mathematical Thinking Coursera Quiz Answers
- Week 3: Introduction to Mathematical Thinking Coursera Quiz Answers
- Week 4: Introduction to Mathematical Thinking Coursera Quiz Answers
- Week 5: Introduction to Mathematical Thinking Coursera Quiz Answers
- Week 6: Introduction to Mathematical Thinking Coursera Quiz Answers
- Week 7: Introduction to Mathematical Thinking Coursera Quiz Answers
- Week 8: Introduction to Mathematical Thinking Coursera Quiz Answers
- Week 9: Introduction to Mathematical Thinking Coursera Quiz Answers
- More About This Course
- Conclusion
About The Coursera
Coursera, India’s biggest learning platform launched millions of free courses for students daily. These courses are from various recognized universities, where industry experts and professors teach very well and in a more understandable way.
Here, you will find Introduction to Mathematical Thinking Exam Answers in Bold Color below.
These answers are updated recently and are 100% correct✅ answers of all week, assessment, and final exam answers of Introduction to Mathematical Thinking from Coursera Free Certification Course.
Use “Ctrl+F” To Find Any Questions Answer. & For Mobile User, You Just Need To Click On Three dots In Your Browser & You Will Get A “Find” Option There. Use These Option to Get Any Random Questions Answer.
About Introduction to Mathematical Thinking Course
Mathematical thinking is not the same as doing mathematics – at least not as mathematics is typically presented in our school system. School math typically focuses on learning procedures to solve highly stereotyped problems.
Course Apply Link – Introduction to Mathematical Thinking
Introduction to Mathematical Thinking Quiz Answers
Week 1: Introduction to Mathematical Thinking Coursera Quiz Answers
Quiz 1:
Q1. Is it possible for one of (\phi \wedge \psi) \wedge \theta(ϕ∧ψ)∧θ and \phi \wedge (\psi \wedge \theta)ϕ∧(ψ∧θ) to be true and the other false? (If not, then the associative property holds for conjunction.) [Score: 5 points]
- Yes
- No
Q2. Is it possible for one of (\phi \vee \psi) \vee \theta(ϕ∨ψ)∨θ and \phi \vee (\psi \vee \theta)ϕ∨(ψ∨θ) to be true and the other false? (If not, then the associative property holds for disjunction.) [Score: 5 points]
- Yes
- No
Q3. Is it possible for one of \phi \wedge (\psi \vee \theta)ϕ∧(ψ∨θ) and (\phi \wedge \psi ) \vee (\phi \wedge \theta)(ϕ∧ψ)∨(ϕ∧θ) to be true and the other false? (If not, then the distributive property holds for conjunction across disjunction.) [Score: 5 points]
- Yes
- No
Q4. Is it possible for one of \phi \vee (\psi \wedge \theta)ϕ∨(ψ∧θ) and (\phi \vee \psi ) \wedge (\phi \vee \theta)(ϕ∨ψ)∧(ϕ∨θ) to be true and the other false? (If not, then the distributive property holds for disjunction across conjunction.) [Score: 5 points]
- Yes
- No
Q5. Is showing that the negation \neg \phi¬ϕ is true equivalent to showing that \phiϕ is false? [Score: 5 points]
- Yes
- No
Q6. Assuming you know nothing more about Alice, which of (a) – (e) is most likely? (Or does (f) hold?) [Score: 5 points]
- (a) Alice is a rock star and works in a bank.
- (b) Alice is quiet and works in a bank.
- (c) Alice is quiet and reserved and works in a bank.
- (d) Alice is honest and works in a bank.
- (e) Alice works in a bank.
- (f) None of the above is more or less likely.
Q7. Assuming you know nothing more about Alice, which of (a) – (e) is most likely? (Or does (f) hold?) [Score: 5 points]
- (a) Alice is a rock star or she works in a bank.
- (b) Alice is quiet and works in a bank.
- (c) Alice is a rock star.
- (d) Alice is honest and works in a bank.
- (e) Alice works in a bank.
- (f) None of the above is more or less likely.
Q8. Identify which of the following are true (where xx denotes an arbitrary real number). If you do not select a particular statement, the system will assume you think it is false. [Score: 5 points]
- (x\gt 0) \wedge (x \leq 10)(x>0)∧(x≤10) means 0 \leq x \leq 100≤x≤10
- (x \geq 0) \wedge (x^2 \lt 9)(x≥0)∧(x2<9) means 0 \leq x \lt 30≤x<3
- (x \geq 0) \wedge (x \leq 0)(x≥0)∧(x≤0) means x=0x=0
- There is no xx for which (x \lt 4) \wedge (x \gt 4)(x<4)∧(x>4)
- – 5 \leq x \leq 5−5≤x≤5 means xx is at most 5 units from 0.
- -5 \lt x \lt 5−5<x<5 implies that xx cannot be exactly 5 units from 0.
- (x \geq 0) \vee (x \lt 0)(x≥0)∨(x<0)
- (0 = 1) \vee (x^2 \geq 0)(0=1)∨(x2≥0)
- If (x \gt 0 \vee x \lt 0)(x>0∨x<0) then x \neq 0x=0.
- If x^2 = 9x2=9 then (x = 3 \vee x = -3)(x=3∨x=−3).
Week 2: Introduction to Mathematical Thinking Coursera Quiz Answers
Quiz 1: Problem Set 2
Q1. Which of the following conditions are necessary for the natural number nn to be divisible by 6? Select all those you believe are necessary. [6 points]
- nn is divisible by 3.
- nn is divisible by 9.
- nn is divisible by 12.
- n=24n=24.
- n^2n
2
is divisible by 3. - nn is even and divisible by 3.
Q2. Which of the following conditions are sufficient for the natural number nn to be divisible by 6? Select all those you believe are sufficient. [6 points]
- nn is divisible by 3.
- nn is divisible by 9.
- nn is divisible by 12.
- n=24n=24.
- n^2n
2
is divisible by 3. - nn is even and divisible by 3.
Q3. Which of the following conditions are necessary and sufficient for the natural number nn to be divisible by 6? Select all those you believe are necessary and sufficient. [6 points]
- nn is divisible by 3.
- nn is divisible by 9.
- nn is divisible by 12.
- n=24n=24.
- n^2n
2
is divisible by 3. - nn is even and divisible by 3.
Q4. Identify the antecedent in the conditional ”If the apples are red, they are ready to eat.” [1 point]
- THE APPLES ARE RED
- THE APPLES ARE READY TO EAT
Q5. Identify the antecedent in the conditional ”The differentiability of a function ff is sufficient for ff to be continuous.” [1 point]
- ff IS DIFFERENTIABLE
- ff IS CONTINUOUS
Q6. Identify the antecedent in the conditional ”A function ff is bounded if ff is integrable.” [1 point]
- ff IS BOUNDED
- ff IS INTEGRABLE
Q7. Identify the antecedent in the conditional ”A sequence S is bounded whenever S is convergent.” [1 point]
- S IS BOUNDED
- S IS CONVERGENT
Q8. Identify the antecedent in the conditional ”It is necessary that nn is prime in order for 2^n – 12
n−1 to be prime.”
- nn IS PRIME
- 2^n – 12
n
−1 IS PRIME
Q9. Identify the antecedent in the conditional ”The team wins only when Karl is playing.” [1 point]
- THE TEAM WINS
- KARL IS PLAYING
Q10. QIdentify the antecedent in the conditional ”When Karl plays the team wins.” [1 point]
- THE TEAM WINS
- KARL PLAYS
Q11. Identify the antecedent in the conditional ”The team wins when Karl plays.” [1 point]
- THE TEAM WINS
- KARL PLAYS
Q12. For natural numbers m, nm,n, is it true that mnmn is even iff mm and nn are even? [2 points]
- Yes
- No
Q13. Is it true that mnmn is odd iff mm and nn are odd? [2 points]
- Yes
- No
Q14. Which of the following pairs of propositions are equivalent? Select all you think are equivalent. [6 points]
- \neg P \vee Q \ , \ P \Rightarrow Q¬P∨Q , P⇒Q
- \neg (P \vee Q) \ , \ \neg P \wedge \neg Q¬(P∨Q) , ¬P∧¬Q
- \neg P \vee \neg Q \ , \ \neg (P \vee \neg Q)¬P∨¬Q , ¬(P∨¬Q)
- \neg (P \wedge Q) \ , \ \neg P \vee \neg Q¬(P∧Q) , ¬P∨¬Q
- \neg (P \Rightarrow (Q \wedge R)) \ , \ \neg (P \Rightarrow Q) \vee \neg (P \Rightarrow R)¬(P⇒(Q∧R)) , ¬(P⇒Q)∨¬(P⇒R)
- P \Rightarrow (Q \Rightarrow R) \ , \ (P \wedge Q) \Rightarrow RP⇒(Q⇒R) , (P∧Q)⇒R
Q15. A major focus of this course is learning how to assess mathematical reasoning. How good you are at doing that lies on a sliding scale. Your task is to evaluate this purported proof according to the course rubric.
Enter your evaluation (which should be a whole number between 0 and 24, inclusive) in the box. An answer within 4 points of the instructor’s evaluation counts as correct. [5 points]
You should read the website section “Using the evaluation rubric” (and watch the associated short explanatory video) before attempting this question. There will be many more proof evaluation questions as the course progresses.
NOTE: The scoring system for proof evaluation questions is somewhat arbitrary, due to limitations of the platform. But the goal is to provide
opportunities for you to reflect on what makes an argument a good proof, and you are allowed to repeat the
Problem Sets as many times as it takes to be able to progress. Your “score” is simply feedback information.
Moreover, the “passing grade” for Problem Sets is a low 35%.
Enter answer here
Week 3: Introduction to Mathematical Thinking Coursera Quiz Answers
Quiz 1: Problem Set 3
Q1. Let xx be a variable ranging over doubles tennis matches, and tt be a variable ranging over doubles tennis matches when Rosario partners with Antonio. Let W(x)W(x) mean that Rosario and her partner (whoever it is) win the doubles match xx. Select the following English sentences that mean the same as the symbolic formula \exists tW(t)∃tW(t).
- Rosario and Antonio win every match where they are partners.
- Rosario and her partner sometimes win the match when she partners with Antonio.
- Whenever Rosario partners with Antonio, they win the match.
- Rosario and Antonio win exactly one match when they are partners.
- Rosario and Antonio win at least one match when they are partners.
- If Rosario and her partner win the match, she must be partnering with Antonio.
Q2. Let xx be a variable ranging over doubles tennis matches, and tt be a variable ranging over doubles tennis matches when Rosario partners with Antonio. Let W(x)W(x) mean that Rosario and her partner (whoever it is) win the doubles match xx. Select the following English sentences that mean the same as the symbolic formula \forall tW(t)∀tW(t).
- Rosario and Antonio win every match where they are partners
- Rosario always partners with Antonio.
- Whenever Rosario partners with Antonio, they win the match.
- Sometimes, Rosario and her partner win the match.
- Rosario and her partner win the match whenever she partners with Antonio.
- If Rosario and her partner win the match, she must be partnering with Antonio.
Q3. Which of the following formal propositions says that there is no largest prime. (There may be more than one. You have to select all correct propositions.) The variables denote natural numbers. [6 points]
- \neg\exists x \exists y [¬∃x∃yPrime(x)\, \wedge \neg(x)∧¬Prime(y) \wedge (x \lt y)∧(x<y)]
- \forall x \exists y [∀x∃yPrime(x)\, \wedge\,(x)∧Prime(y) \wedge (x \lt y)∧(x<y)]
- \forall x \forall y [∀x∀yPrime(x)\, \wedge\,(x)∧Prime(y) \wedge (x \lt y)∧(x<y)]
- \forall x \exists y [∀x∃yPrime(y) \wedge (x \lt y)∧(x<y)]
- \exists x \forall y [∃x∀yPrime(y) \wedge (x \lt y)∧(x<y)]
- \forall x \exists y [∀x∃yPrime(x) \wedge (x \lt y)∧(x<y)]
Q4. The symbol \exists ! x∃!x means “There exists a unique xx such that …” Which of the following accurately defines the expression \exists ! x \phi(x)∃!xϕ(x)?
- \exists x \forall y [\phi(x) \wedge [\phi(y) \Rightarrow (x \neq y)]]∃x∀y[ϕ(x)∧[ϕ(y)⇒(x
=y)]] - \exists x [\phi(x) \wedge (\exists y)[\phi(y) \Rightarrow (x \neq y)]]∃x[ϕ(x)∧(∃y)[ϕ(y)⇒(x
=y)]] - \exists x \exists y [(\phi(x) \wedge \phi(y)) \Rightarrow (x = y)]∃x∃y[(ϕ(x)∧ϕ(y))⇒(x=y)]
- [\exists x \phi(x)] \wedge (\forall y)[\phi(y) \Rightarrow (x = y)][∃xϕ(x)]∧(∀y)[ϕ(y)⇒(x=y)]
- \exists x [\phi(x) \wedge (\forall y)[\phi(y) \Rightarrow (x = y)]]∃x[ϕ(x)∧(∀y)[ϕ(y)⇒(x=y)]]
Q5. Which of the following means “The arithmetic operation x !\uparrow! yx↑y is not commutative.” (\uparrow↑ is just some arbitrary binary operation.)
- \forall x \forall y [x !\uparrow! y \neq y !\uparrow! x]∀x∀y[x↑y
=y↑x] - \forall x \exists y [x !\uparrow! y \neq y !\uparrow! x]∀x∃y[x↑y
=y↑x] - \exists x \exists y [x !\uparrow! y \neq y !\uparrow! x]∃x∃y[x↑y
=y↑x] - \exists x \forall y [x !\uparrow! y \neq y !\uparrow! x]∃x∀y[x↑y
=y↑x]
Q6. Evaluate this purported proof, and evaluate it according to the course rubric.
Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box. An answer within 4 points of the instructor’s grade counts as correct. [5 points]
You should read the website section “Using the rubric” (and watch the explanatory video) before attempting this question. There will be many more proof evaluation questions as the course progresses.
Enter answer here
Week 4: Introduction to Mathematical Thinking Coursera Quiz Answers
Quiz 1: Problem Set 4
Q1. Which of the following is equivalent to \neg \forall x[P(x) \Rightarrow (Q(x) \vee R(x))]¬∀x[P(x)⇒(Q(x)∨R(x))]? (Only one is.)
- \exists x[P(x) \vee \neg Q(x) \vee \neg R(x)]∃x[P(x)∨¬Q(x)∨¬R(x)]
- \exists x[\neg P(x) \wedge Q(x) \wedge R(x)]∃x[¬P(x)∧Q(x)∧R(x)]
- \exists x[P(x) \wedge \neg Q(x) \wedge \neg R(x)]∃x[P(x)∧¬Q(x)∧¬R(x)]
- \exists x[P(x) \wedge (\neg Q(x) \vee \neg R(x))]∃x[P(x)∧(¬Q(x)∨¬R(x))]
- \exists x[P(x) \vee (\neg Q(x) \wedge \neg R(x))]∃x[P(x)∨(¬Q(x)∧¬R(x))]
Q2. Let p,qp,q be variables denoting tennis players, let tt be a variable denoting games of tennis, and let W(p,q,t)W(p,q,t) mean that pp plays against qq in game tt and wins. Which of the following claims about tennis players mean the same as the symbolic formula \forall p \exists q \exists t W(p,q,t)∀p∃q∃tW(p,q,t)? Select all that have that meaning.
- Everyone wins a game.
- Everyone loses a game.
- For every player there is another player they beat all the time.
- There is a player who loses every game.
- There is a player who wins every game.
Q3. Let p,qp,q be variables denoting the tennis players in a club, let tt be a variable denoting the club’s games of tennis, and let W(p,q,t)W(p,q,t) mean that pp plays against qq in game tt and wins. Assuming that there are at least two tennis players and games between them do take place, which (if any) of the following symbolic formula cannot possibly be true? Select all you think cannot possibly be true. [3 points]
- \forall p \exists q \exists t W(p,q,t)∀p∃q∃tW(p,q,t)
- \forall p \forall q \exists t W(p,q,t)∀p∀q∃tW(p,q,t)
- \forall q \exists p \exists t W(p,q,t)∀q∃p∃tW(p,q,t)
Q4. Which (one) of the following means “Everybody loves a lover”, where L(x,y)L(x,y) means (person) xx loves (person) yy and a lover is defined to be someone in a mutual loving relationship? [5 points] If English is not your native language, you might want to discuss this sentence with a native English speaker before you answer. It’s an idiomatic expression.]
- \forall x \forall y [\exists z(L(x,z) \wedge L(z,x)) \Rightarrow L(y,x)]∀x∀y[∃z(L(x,z)∧L(z,x))⇒L(y,x)]
- \forall x \forall y [\forall z(L(x,z) \vee L(z,x)) \Rightarrow L(y,x)]∀x∀y[∀z(L(x,z)∨L(z,x))⇒L(y,x)]
- \forall x [\exists z(L(x,z) \wedge L(z,x)) \wedge \forall y L(y,x)]∀x[∃z(L(x,z)∧L(z,x))∧∀yL(y,x)]
Q5. Which of the following statements about the order relation on the real line is/are false?
- \forall x \forall y \forall z[(x \leq y) \wedge (y \leq z) \Rightarrow (x \leq z)]∀x∀y∀z[(x≤y)∧(y≤z)⇒(x≤z)]
- \forall x \forall y [(x \leq y) \wedge (y \leq x) \Rightarrow (x = y)]∀x∀y[(x≤y)∧(y≤x)⇒(x=y)]
- \forall x \exists y [(x \leq y) \wedge (y \leq x)]∀x∃y[(x≤y)∧(y≤x)]
- \exists x \forall y [(y \lt x) \vee (x \lt y)]∃x∀y[(y<x)∨(x<y)]
Q6. A student produced this purported proof while trying to understand Euclid’s proof of the infinitude of the primes. Evaluate it according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box. An answer within 4 points of the instructor’s grade counts as correct. [5 points]
You should read the website section “Using the rubric” and watch the associated short explanatory video before attempting this question.
Enter answer here
Week 5: Introduction to Mathematical Thinking Coursera Quiz Answers
Quiz 1: Problem Set 5
Q1. Let m, nm,n denote any two natural numbers. Is the following a valid proof that mnmn is odd iff mm and nn are odd?
If m,nm,n are odd there are integers p,qp,q such that m=2p+1, n=2q+1m=2p+1,n=2q+1. Then mn=(2p+1)(2q+1) = 2(2pq+p+q)+1mn=(2p+1)(2q+1)=2(2pq+p+q)+1, so mnmn is odd. That completes the proof.
- Valid
- Invalid
Q2. Take the sentence:
You can fool some of the people some of the time, but you cannot fool all of the people all the time.
Let xx be a variable for a person, tt a variable for a period of time, and let F(x,t)F(x,t) mean you can fool xx at time tt.
Which of the following mathematical formulas is equivalent to the given statement?
- \exists x \exists t F(x,t) \wedge \exists x \exists t \neg F(x,t)∃x∃tF(x,t)∧∃x∃t¬F(x,t)
- \exists x \exists t F(x,t) \wedge \neg \forall x \exists t F(x,t)∃x∃tF(x,t)∧¬∀x∃tF(x,t)
- \exists x \exists t F(x,t) \wedge \neg \exists x \exists t F(x,t)∃x∃tF(x,t)∧¬∃x∃tF(x,t)
- None of the above.
Q3. True or false? For any two statements \phiϕ and \psiψ, either \phi \Rightarrow \psiϕ⇒ψ or its converse is true (or both).
- True
- False
Q4. Are the following two statements equivalent?
\neg(\phi \Rightarrow \psi)¬(ϕ⇒ψ) and \phi \wedge (\neg\psi)ϕ∧(¬ψ)
- Yes.
- No.
Q5. Are the following two statements equivalent?
(\phi \vee \psi) \Rightarrow \theta(ϕ∨ψ)⇒θ and (\phi \Rightarrow \theta) \wedge (\psi \Rightarrow \theta)(ϕ⇒θ)∧(ψ⇒θ)
- Yes.
- No.
Q6. True or false? There are infinitely many natural numbers nn for which \sqrt{n}
n is rational. (Before entering your answer, you should construct a proof of the statement or its negation, so you are sure.)
- True
- False
Q7. This argument claims to prove that 1=2.
Obviously it is incorrect. Identify exactly what the error is, and evaluate the purported proof according to the course rubric.
Remember, this is not a regular mathematics course of the kind you are probably familiar with. We are working on various elements of mathematical thinking, mathematical exposition, and the communication of mathematics. The rubric is designed to focus attention on all of those factors. Your “Overall valuation” figure is the grade you would assign a student if s/he submitted this proof in a first-year college mathematics course.
Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box. An answer within 4 points of the instructor’s grade counts as correct.
You should read the website section “Using the rubric” and view the associated short explanatory video before attempting this question.
Enter answer here
Week 6: Introduction to Mathematical Thinking Coursera Quiz Answers
Quiz 1: Problem Set 6
Q1. Is the following proof valid or not?
Theorem: For any natural number nn, 2^n > 2n2
n
2n.
Proof: By induction. The case n=1n=1 is obviously true, so assume the inequality holds for nn.
That is, assume 2^n>2n2
n
2n. Then?
2^{n+1} = 2 \cdot 2^n > 2 \cdot 2n2
n+1
=2⋅2
n
2⋅2n (by the induction hypothesis) = 4n = 2n + 2n \geq 2n + 2=4n=2n+2n≥2n+2 (since n \geq 1) = 2(n+1)n≥1)=2(n+1)
This establishes the inequality for n+1n+1. Hence, by induction, the inequality holds for all nn.
- Valid
- Invalid
Q2. Is the following proof valid or not?
Theorem: If a nonempty finite set XX has nn elements, then XX has exactly 2^n2
n
distinct subsets.
Proof: By induction on nn.
The case n=1n=1 is true, since if XX is a set with exactly one element, say X = {a}X={a}, then XX has the two subsets \emptyset∅ and XX itself.
Assume the theorem is true for nn. Let XX be a set of n+1n+1 elements. Let a \in Xa∈X and let Y = X – {a}Y=X−{a} (i.e., obtain YY by removing aa from XX). Then YY is a set with nn elements. By the induction hypothesis, YY has 2^n2
n
subsets. List them as Y_1,\ldots,Y_{2^n}Y
1
,…,Y
2
n
Then all the subsets of XX are Y_1,\ldots,Y_{2^n}, Y_1 \cup {a},\ldots,Y_{2^n} \cup {a}Y
1
,…,Y
2
n
,Y
1
∪{a},…,Y
2
n
∪{a} (i.e., the subsets of YY together with the subsets of YY with aa added to each one). There are 2\cdot2^n = 2^{n+1}2⋅2
n=2
n+1 sets in this list. This establishes the theorem for n+1n+1. Hence, by induction, it is true for all nn.
- Valid
- Invalid
Q3. True or false? If pp is a prime number, then \sqrt{p}
p is irrational. (Before entering your answer, you should either construct a proof of truth or find a counter-example, so you are sure. After you have completed the problem set, you should write up your proof or counter-example and share it with your study group for feedback. You can assume that if pp is prime, then whenever pp divides a product abab, pp divides at least one of a, ba,b. ) [3 points]
- True
- False
Q4. Evaluate this purported proof
according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box. An answer within 4 points of the instructor’s grade counts as correct. [3 points]
You should read the website section “Using the rubric” and watch the associated short explanatory video before attempting this question.
Enter answer here
Q5. This purported theorem is obviously false:
Select the line number of the (incorrect) statement where the proof logically breaks down.
- Line 1
- Line 2
- Line 3
- Line 4
- Line 5
- Line 6
- Line 7
- Line 8
- Line 9
- Line 10
- Line 11
- Line 12
- Line 13
- Line 14
- Line 15
- Line 16
- Line 17
- Line 18
- Line 19
Week 7: Introduction to Mathematical Thinking Coursera Quiz Answers
Quiz 1: Problem Set 7
Q1. Say which of the following statements are true. (Leave the box blank to indicate that it is false.)
- 20|30020∣300
- 17|3517∣35
- 5|05∣0
- 0|50∣5
- 21|(-21)21∣(−21)
Q2. Say whether the following proof is valid or not.
Theorem. The square of any odd number is 1 more than a multiple of 8. (For example, 3^{2}= 9 = 8 + 1, 5^{2} = 25 = 3 \cdot 8 + 13
2
=9=8+1,5
2
=25=3⋅8+1.)
Proof: By the Division Theorem, any number can be expressed in one of the forms 4q,\ 4q+1,\ 4q+2,\ 4q+34q, 4q+1, 4q+2, 4q+3. So any odd number has one of the forms 4q+1, 4q+34q+1,4q+3. Squaring each of these gives:
(4q+1)2(4q+3)2==16q2+8q+116q2+24q+9==8(2q2+q)+18(2q2+3q+1)+1
(4q+1)
2
(4q+3)
2
=
16q
2
+8q+1
16q
2
+24q+9
=
8(2q
2
+q)+1
8(2q
2
+3q+1)+1
In both cases the result is one more than a multiple of 8. This proves the theorem.
- Valid
- Invalid
Q3. Say whether the following verification of the method of induction is valid or not.
Proof: We have to prove that if:
- A(1)A(1)
- (\forall n)A(n) \Rightarrow A(n+1)[A(n)⇒A(n+1)]
then (\forall n)A(n)(∀n)A(n).
We argue by contradiction. Suppose the conclusion is false. Then there will be a natural number nn such that \neg A(n)¬A(n). Let mm be the least such number. By the first condition, m>1m>1, so m=n+1m=n+1 for some nn. Since n \lt mn<m, A(n)A(n). Then by the second condition, A(n+1)A(n+1), i.e., A(m)A(m). This is a contradiction, and that proves the result.
- Valid
- Invalid
Q4. Evaluate this purported proof
according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box. An answer within 4 points of the instructor’s grade counts as correct.
You should read the website section “Using the rubric” and watch the associated short explanatory video before attempting this question.
Enter answer here
Q5. Evaluate this purported proof
according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box. An answer within 4 points of the instructor’s grade counts as correct.
Enter answer here
Q6. Evaluate this purported proof
according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box. An answer within 4 points of the instructor’s grade counts as correct.
Enter answer here
Week 8: Introduction to Mathematical Thinking Coursera Quiz Answers
Quiz 1: Problem Set 8
Q1. Say which of the following are true. (Leave the box empty to indicate that it’s false.)
- A set AA of reals can have at most one least upper bound.
- If a set AA of reals has a lower bound, it has infinitely many lower bounds.
- If a set AA of reals has both a lower bound and an upper bound, then it is finite.
- 0 is the least upper bound of the set of negative integers, considered as a subset of the reals.
Q2. Which of the following say that bb is the greatest lower bound of a set AA of reals? (Leave the box empty to indicate that it does not say that.)
- b \leq ab≤a for all a \in Aa∈A and if c \leq ac≤a for all a \in Aa∈A, then b \geq cb≥c.
- b \leq ab≤a for all a \in Aa∈A and if c \leq ac≤a for all a \in Aa∈A, then b > cb>c.
- b \lt ab<a for all a \in Aa∈A and if c \lt ac<a for all a \in Aa∈A, then b \geq cb≥c.
- b \lt ab<a for all a \in Aa∈A and if c \leq ac≤a for all a \in Aa∈A, then b \geq cb≥c.
- b \leq ab≤a for all a \in Aa∈A and if \epsilon > 0ϵ>0 there is an a \in Aa∈A such that a \lt b + \epsilona<b+ϵ.
Q3. Evaluate this purported proof
according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box. An answer within 4 points of the instructor’s grade counts as correct.
You should read the website section “Using the rubric” and watch the associated short explanatory video before attempting this question.
Enter answer here
Q4. Evaluate thus purported proof
according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box. An answer within 4 points of the instructor’s grade counts as correct.
Enter answer here
Q5. Evaluate this purported proof
according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box. An answer within 4 points of the instructor’s grade counts as correct.
Enter answer here
Week 9: Introduction to Mathematical Thinking Coursera Quiz Answers
Quiz 1: Evaluation Exercise 1
Q1. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Say whether the following is true or false and support your answer by a proof:
(∃m ∈ N )(∃n ∈ N )(3m + 5n = 12)(∃m∈N)(∃n∈N)(3m+5n=12)
ANSWER It’s true. Let m = 4, n = 0m=4,n=0. Then 3m + 5n = 123m+5n=12.
Enter answer here
Q2. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Say whether the following is true or false and support your answer by a proof: The sum of any five consecutive integers is divisible by 5 (without remainder).
ANSWER True. 1 + 2 + 3 + 4 + 5 = 15, which is divisible by 5.
Enter answer here
Q3. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Say whether the following is true or false and support your answer by a proof: For any integer nn, the number n^2 + n + 1n
2
+n+1 is odd.
ANSWER We prove it by induction.
For n = 1, n^2 + n + 1 = 1 + 1 + 1 = 3n=1,n
2
+n+1=1+1+1=3, which is odd.
Suppose n^2 + n + 1n
2
+n+1 is odd. Then
(n + 1)^2 + (n + 1) + 1 = n^2 + 2n + 1 + n + 1 + 1 = n^2 + 3n + 2 + 1 = (n + 1)(n + 2) + 1(n+1)
2
+(n+1)+1=n
2
+2n+1+n+1+1=n
2
+3n+2+1=(n+1)(n+2)+1
But one of (n + 1),(n + 2)(n+1),(n+2) must be even, so (n + 1)(n + 2)(n+1)(n+2) is even. Hence (n + 1)^2 + (n + 1) + 1(n+1)
2
+(n+1)+1 is odd. This proves the result by induction.
Enter answer here
Q4. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Prove that every odd natural number is of one of the forms 4n + 14n+1 or 4n + 3,4n+3, where nn is an integer.
ANSWER We prove it by induction. For n = 1, 4n + 1 = 5n=1,4n+1=5, which is odd.
If it’s true for nn, then 4(n + 1) + 1 = 4n + 4 + 1 = 4n + 54(n+1)+1=4n+4+1=4n+5 and 4(n + 1) + 3 = 4n + 4 + 3 = 4n + 74(n+1)+3=4n+4+3=4n+7, which are both odd. This proves the result by induction
Enter answer here
Q5. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Prove that for any integer nn, at least one of the integers nn, n + 2, n + 4n+2,n+4 is divisible by 3.
ANSWER Given mm, by the Division Theorem, m = 4n + qm=4n+q, where 0 ≤ q < 40≤q<4. If we divide nn by 3, either it divides evenly or it leaves a remainder of 1 or 2. So 3 has to divide one of n, n + 2, n + 4.n,n+2,n+4.
Enter answer here
Q6. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION A classic unsolved problem in number theory asks if there are infinitely many pairs of ‘twin primes’, pairs of primes separated by 2, such as 3 and 5, 11 and 13, or 71 and 73. Prove that the only prime triple (i.e. three primes, each 2 from the next) is 3, 5, 7.
ANSWER Suppose p, qp,q is a pair of twin primes, where p > 5p>5. We show that it is impossible to extend p, qp,q to be a prime triple Let N = p.q + 1N=p.q+1. Then, either NN is prime or else there is a prime rr such that r|Nr∣N. It follows that there is no prime that can be added to give a prime triple.
Enter answer here
Q7. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Prove that for any natural number n:
2 + 2^2
2
- 2^3
3 - . . . + 2n = 2^{n+1}
n+1
− 2
ANSWER For n = 1n=1, the identity reduces to 2 = 22 − 22=22−2, which is true.
Assume it hold for nn. Then, adding 2n+12n+1 to both sides of the identity,
2 + 2^2 + 2^3 + . . . + 2^n + 2^{n+1} = 2^{n+1} − 2 + 2^{n+1} = 2.2^{n+1} − 2 = 2^{n+2} − 22+2
2
+2
3
+…+2
n
+2
n+1
=2
n+1
−2+2
n+1
=2.2
n+1
−2=2
n+2
−2
This is the identity at n + 1n+1. That completes the proof.
Enter answer here
Q8. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Prove (from the definition of a limit of a sequence) that if the sequence {a_n}_{n=1}^\infty{a
n
}
n=1
∞
tends to limit LL as n \rightarrow \inftyn→∞, then for any fixed number M > 0M>0, the sequence {Ma_n}_{n=1}^\infty{Ma
n
}
n=1
∞
tends to the limit MLML.
ANSWER By the assumption, we can find an NN such that
n \geq N \rightarrow | a_n = L | < \epsilon /Mn≥N→∣a
n=L∣<ϵ/M
Then,
n \geq N \Rightarrow |Ma_n – M L|= M. |a_n – L| < M. \epsilon / M = \epsilonn≥N⇒∣Ma
n
−ML∣=M.∣a
n
−L∣<M.ϵ/M=ϵ
which shows that {Ma_nMa
n
}_{n=1}^\infty
n=1
∞
tends to the limit M LML
Enter answer here
Q9. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Given a collection A_nA
n
, n = 1, 2, \ldotsn=1,2,… of intervals of the real line, their intersection is defined to be
\bigcap_{n=1}^\infty A_n = {x|(\forall n)(x \in A_n)}⋂
n=1
∞
A
n
={x∣(∀n)(x∈A
n
)}.
Give an example of a family of intervals A_nA
n
, n = 1, 2, \ldotsn=1,2,…, such that A_{n+1} \subset A_nA
n+1
⊂A
n
for all nn and \bigcap_{n=1}^\infty A_n = \emptyset⋂
n=1
∞
A
n
=∅
Prove that your example has the stated property.
ANSWER Let A_n = ( \frac{1}{n+1} , \frac{1}{n} )A
n
=(
n+1
1
,
n
1
).
For any x > 0x>0, we can find an mm such that 1/m < x1/m<x, and then x \notin ( \frac{1}{m+1} , \frac{1}{m} )x∈ /(m+11,m1).
Hence \bigcap_{n=1}^\infty A_n = \emptyset⋂
n=1
∞
A
n=∅
Enter answer here
Q10. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Give an example of a family of intervals A_n
n
, n = 1, 2, \ldotsn=1,2,…, such that A_{n+1} \subset A_nA
n+1
⊂A
n
for all nn and \bigcap_{n=1}^\infty A_n⋂
n=1
∞
A
n
consists of a single real number.
Prove that your example has the stated property.
ANSWER Let A_n = (−1/n, +1/n)A
n=(−1/n,+1/n).
For any n, 0 \in A_n,n,0∈A
n
, so 0 \in \bigcap_{n=1}^\infty A_n0∈⋂
n=1
∞
A
n
On the other hand, if x \ne 0x
=0, then there is an mm such that 1/m < |x|1/m<∣x∣, and for that m, x \notin A_mm,x∈
/
A
m
, so x \notin \bigcap_{n=1}^\infty A_nx∈
/
⋂
n=1
∞
A
n
.
Hence \bigcap_{n=1}^\infty A_n = {0}⋂
n=1
∞
A n={0}.
Enter answer here
Quiz 2: Evaluation Exercise 2
Q1. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Say whether the following is true or false and support your answer by a proof:
(∃m ∈ N )(∃n ∈ N )(3m + 5n = 12)(∃m∈N)(∃n∈N)(3m+5n=12)
ANSWER It’s false. We need only look at values of mm from 1 to 3 (since 3×4 = 12, which already
gives the right-hand side) and values of nn from 1 to 2 (since 5 × 3 = 15 ≥ 12). If you calculate 3m + 5n3m+5n for the six possible pairs in this range, you find that the answer is never 12. This proves
the result.
Enter answer here
Q2. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Say whether the following is true or false and support your answer by a proof: The sum of any five
consecutive integers is divisible by 5 (without remainder).
ANSWER False. Let n, n + 1, n + 2, n + 3, n + 4n,n+1,n+2,n+3,n+4 be any five consecutive integers. Then
n + (n + 1) + (n + 2) + (n + 3) + (n + 4) = 5n + 1 + 2 + 3 + 4 = 5n + 8 = 5(n + 1) + 3n+(n+1)+(n+2)+(n+3)+(n+4)=5n+1+2+3+4=5n+8=5(n+1)+3
which is not a multiple of 5 since in the Division Theorem it leaves a remainder of 3.
Enter answer here
Q3. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Say whether the following is true or false and support your answer by a proof: For any integer nn,
the number n^2 + n + 1n
2
+n+1 is odd.
ANSWER For any nn, n^2 +n+ 1 = n(n+ 1) + 1n
2
+n+1=n(n+1)+1. But n(n+ 1)n(n+1) is always even (since one of n, n+ 1n,n+1 is even and the other odd). Hence n(n + 1)n(n+1) is always odd, as claimed.
Enter answer here
Q4. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Prove that every odd natural number is of one of the forms 4n + 14n+1 or 4n + 34n+3, where nn is an integer.
ANSWER This is not true. For example, if n = −1n=−1, which is an integer, then 4n + 1 = −34n+1=−3 and 4n + 3 = −14n+3=−1. But −3 and −1 are not natural numbers.
Enter answer here
Q5. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Prove that for any integer nn, at least one of the integers n, n + 2, n + 4n,n+2,n+4 is divisible by 3
ANSWER nn can be expressed in one of the forms 3q, 3q + 1, 3q + 23q,3q+1,3q+2, for some qq.
In the first case, nn is divisible by 3.
In the second case n + 2 = 3q + 3 = 3(q + 1n+2=3q+3=3(q+1), so n + 2n+2 is divisible by 3.
In the third case n + 4 = 3q + 6 = 3(q + 2)n+4=3q+6=3(q+2), so n + 4n+4 is divisible by 3.
Enter answer here
Q6. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION A classic unsolved problem in number theory asks if there are infinitely many pairs of ‘twin primes’,
pairs of primes separated by 2, such as 3 and 5, 11 and 13, or 71 and 73. Prove that the only prime
triple (i.e. three primes, each 2 from the next) is 3, 5, 7
ANSWER Let n, n + 2, n + 4n,n+2,n+4 be any three successive natural numbers, where n > 3n>3. I show that
3 divides one of these numbers. If 3 does not divide nn, then by the Division Theorem, n = 3q + 1n=3q+1 or n = 3q+ 2n=3q+2, for some qq. In the first case, n+ 2 = 3q+ 3n+2=3q+3, so 3|n3∣n, and in the second case n+ 4 = 3q+ 644n+4=3q+644,
so again 3|n3∣n. Thus 3 must divide one of the three numbers, which means they cannot all be prime.
Enter answer here
Q7. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Prove that for any natural number nn:
2 + 2^2 + 2^3 + . . . + 2^n = 2^{n+1} − 22+2
2
+2
3
+…+2
n
=2
n+1
−2
ANSWER We prove the result by induction. For n = 1n=1, the identity reduces to 2 = 2^2 − 22=2
2
−2, which
is true. Assume it hold for nn.
Then, 2 + 2^2 + 2^3 + . . . + 2^n + 2^{n+1} = 2^{n+1} − 2 + 2^{n+1} = 2.2^{n+1} − 2 = 2^{n+2} − 22+2
2
+2
3
+…+2
n
+2
n+1
=2
n+1
−2+2
n+1
=2.2
n+1
−2=2
n+2
−2
This is the identity at n + 1n+1. The result follows by induction.
Enter answer here
Q8. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Prove (from the definition of a limit of a sequence) that if the sequence {a_n}_{n=1}^\infty{a
n
}
n=1
∞
tends to limit LL as n → ∞n→∞, then for any fixed number M > 0M>0, the sequence {Ma_n}_{n=1}^\infty{Ma
n
}
n=1
∞
tends to the limit MLML.
ANSWER Pick \epsilonϵ > 0. Since {a_na
n
}{^∞{n=1}} n=1 ∞ tends to limit L L as n → ∞n→∞, there is an NN such that a_na n is within a distance of \epsilon/Mϵ/M of LL whenever n>Nn>N. For any such nn, Ma_nMa n is within a distance M(\epsilon/M)M(ϵ/M) = \epsilonϵ of MLML. Hence {Ma_nMa n }{^\infty{n=1}}
n=1
∞
tends to MLML as nn tend to \infty∞
Enter answer here
Q9. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Given a collection A_nA
n
, nn = 1, 2, . . . of intervals of the real line, their intersection is defined to be \bigcap_{n=1}^\infty ⋂
n=1
∞
A_nA
n
= {x |(∀n)(x ∈ An)}x∣(∀n)(x∈An). Give an example of a family of intervals A_n, n = 1, 2A
n
,n=1,2, . . ., such that A_{n+1} ⊂A
n+1
⊂ A_nA
n
for all nn and
\bigcap_{n=1}^\infty⋂
n=1
∞
A_n = ∅A
n
=∅
Prove that your example has the stated property.
ANSWER Take the sequence (0, 1), (0, 1/2). (0, 1/4), (0, 1/8), . . . That is, A_nA
n
= (0, 1/2^{n−1}
n−1
).
Since {1/2^n
n
}^∞{n=1} n=1 ∞ tends to 0 as n → ∞n→∞, \bigcap{n=1}^\infty⋂
n=1
∞
A_n = \emptysetA
n
=∅
Enter answer here
Q10. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Give an example of a family of intervals A_n, n = 1, 2A
n
,n=1,2, . . ., such that A_{n+1} ⊂ A_nA
n+1
⊂A
n
for all nn and \bigcap_{n=1}^\infty⋂
n=1
∞
A_nA
n
consists of a single real number. Prove that your example has the stated
property.
ANSWER Take A_n = [0, 1/2^n]A
n
=[0,1/2
n
]. Then 0 ∈ A_n0∈A
n
for all nn, so 0 ∈ \bigcap_{n=1}^\infty⋂
n=1
∞
A_nA
n
. By the same argument
as in question 9 above, it follows that \bigcap_{n=1}^\infty⋂
n=1
∞
A_nA
n
= {\emptyset∅}
Enter answer here
Quiz 3: Evaluation Exercise 3
Q1. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Say whether the following is true or false and support your answer by a proof:
(∃m ∈ N )(∃n ∈ N )(3m + 5n = 12)(∃m∈N)(∃n∈N)(3m+5n=12)
ANSWER It’s false. If n ≥ 2n≥2, then for any m, 3m + 5n ≥ 13m,3m+5n≥13, so we need only show that there is
no m such that 3m + 5 = 123m+5=12, i.e. no m such that 3m = 73m=7. This is immediate.
Enter answer here
Q2. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Say whether the following is true or false and support your answer by a proof: The sum of any five
consecutive integers is divisible by 5 (without remainder)
ANSWER True. Let n, n + 1, n + 2, n + 3, n + 4n,n+1,n+2,n+3,n+4 be any five consecutive integers. Then
n + (n + 1) + (n + 2) + (n + 3) + (n + 4) = 5n + 1 + 2 + 3 + 4 = 5n + 10 = 5(n + 2)n+(n+1)+(n+2)+(n+3)+(n+4)=5n+1+2+3+4=5n+10=5(n+2)
which proves the result.
Enter answer here
Q3. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Say whether the following is true or false and support your answer by a proof: For any integer nn,
the number n^2 + n + 1n
2
+n+1 is odd.
ANSWER True. Consider the two case n even and n odd separately.
If nn is even, say n = 2kn=2k, then
n^2 + n + 1 = 4k^2 + 2k + 1 = 2(2k^2 + k) + 1n
2
+n+1=4k
2
+2k+1=2(2k
2
+k)+1
which is odd.
If nn is odd, say n = 2k + 1n=2k+1, then
n^2+n+1 = (2k+1)^2+(2k+1)+1 = 4k^2+4k+1+2k+1+1 = 4k^2+6k+2+1 = 2(2k^2+3k+1)+1n
2
+n+1=(2k+1)
2
+(2k+1)+1=4k
2
+4k+1+2k+1+1=4k
2
+6k+2+1=2(2k
2
+3k+1)+1
which is odd.
In both cases, n^2 + n + 1n
2
+n+1 is odd.
Enter answer here
Q4. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Prove that every odd natural number is of one of the forms 4n + 1 or 4n + 34n+1or4n+3, where n is an integer.
ANSWER Let m be a natural number. By the Division Theorem, there are unique numbers nn, rr
such that m = 4n + rm=4n+r, where 0 ≤ r < 40≤r<4. Thus m is one of 4n, 4n + 1, 4n + 2, 4n + 34n,4n+1,4n+2,4n+3. Since 4n4n and 4n + 24n+2 are even, if mm is odd, the only possibilities are 4n + 14n+1 and 4n + 34n+3.
Enter answer here
Q5. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Prove that for any integer nn, at least one of the integers nn, n + 2n+2, n + 4n+4 is divisible by 33.
ANSWER By the Division Theorem, nn can be expressed in one of the forms 3q, 3q + 1, 3q + 23q,3q+1,3q+2, for
some qq. In the first case, nn is divisible by 33. In the second case n + 2 = 3q + 3 = 3(q + 1)n+2=3q+3=3(q+1), so n + 2n+2 is divisible by 33. In the third case n + 4 = 3q + 6 = 3(q + 2),n+4=3q+6=3(q+2), so n + 4n+4 is divisible by 33.
Enter answer here
Q6. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION A classic unsolved problem in number theory asks if there are infinitely many pairs of ‘twin primes’,
pairs of primes separated by 2, such as 3 and 5, 11 and 13, or 71 and 73. Prove that the only prime
triple (i.e. three primes, each 2 from the next) is 3, 5, 7
ANSWER Consider any three numbers of the form nn, n + 2n+2, n + 4n+4, where n > 3n>3. By the answer
to the previous question, one of these numbers is divisible by 33, and hence is not prime.
Enter answer here
Q7. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Prove that for any natural number nn: 2 + 2^2 + 2^3 + . . . + 2^n = 2^{n+1} − 22+2
2
+2
3
+…+2
n
=2
n+1
−2
ANSWER Let S = 2 + 2^2 + 2^3 + . . . + 2^nS=2+2
2
+2
3
+…+2
n
. Then 2S = 2^2 + 2^3 + 2^4 + . . . + 2^n + 2^{n+1}2S=2
2
+2
3
+2
4
+…+2
n
+2
n+1
. Subtracting
the first identity from the second gives 2S − S = 2^{n+1} − 22S−S=2
n+1
−2. But 2S − S = S2S−S=S, so this establishes the
stated identity.
Enter answer here
Q8. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Prove (from the definition of a limit of a sequence) that if the sequence {a_n}_{n=1}^\infty{a
n
}
n=1
∞
tends to limit LL as n → ∞n→∞, then for any fixed number M > 0M>0, the sequence {Ma_n}_{n=1}^\infty{Ma
n
}
n=1
∞
tends to the limit MLML
ANSWER Let \epsilonϵ > 0 be given. By the assumption, we can find an NN such that
n \ge N \Rightarrow |a_n – L| \lt \epsilon / Mn≥N⇒∣a
n
−L∣<ϵ/M
Then,
n \ge N \Rightarrow |Ma_n – M L| = M. |a_n – L| < M.\epsilon/M = \epsilonn≥N⇒∣Ma
n
−ML∣=M.∣a
n
−L∣<M.ϵ/M=ϵ
which shows that {Ma_nMa
n
}{^\infty_{n=1}}
n=1
∞
tends to the limit MLML
Enter answer here
Q9. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Given a collection A_n, n = 1, 2, . . .A
n
,n=1,2,… of intervals of the real line, their intersection is defined to be
\bigcap_{n=1}^\infty A_n⋂
n=1
∞
A
n
= {x |(∀n)(x ∈ An)x∣(∀n)(x∈An)}
Give an example of a family of intervals A_n, n = 1, 2, . . .A
n
,n=1,2,…, such that A_{n+1} ⊂ A_nA
n+1
⊂A
n
for all nn and
\bigcap_{n=1}^\infty A_n = ∅⋂
n=1
∞
A
n
=∅
Prove that your example has the stated property.
ANSWER Let A_n = (0, 1/n)A
n
=(0,1/n). Clearly, \bigcap_{n=1}^\infty A_n⋂
n=1
∞
A
n
⊆ A1 = (0, 1)⊆A1=(0,1). Hence any element of the
intersection must be a member of (0, 1)(0,1). But if x ∈ (0, 1)x∈(0,1), we can find a natural number nn such
that 1/n < x1/n<x. Then x \notin A_nx∈
/
A
n
, so x \notinx∈
/
\bigcap_{n=1}^\infty A_n⋂
n=1
∞
A
n
. Thus \bigcap_{n=1}^\infty A_n⋂
n=1
∞
A
n
= \emptyset∅.
Enter answer here
Q10. Grade this answer according to the course rubric. Enter your grade (which should be a whole number between 0 and 24, inclusive) in the box below.
QUESTION Give an example of a family of intervals A_n, n = 1, 2, . . .A
n
,n=1,2,…, such that A_{n+1} ⊂ A_nA
n+1
⊂A
n
for all nn and \bigcap_{n=1}^\infty A_n⋂
n=1
∞
A
n
consists of a single real number. Prove that your example has the stated property.
ANSWER Let A_nA
n
= [0, 1/nn). Clearly, 0 ∈ \bigcap_{n=1}^\infty A_n0∈⋂
n=1
∞
A
n
. But the same argument as above shows that
no other number is in the intersection. Hence \bigcap_{n=1}^\infty A_n⋂
n=1
∞
A
n
= {00}.
We will Update These Answers Soon.
More About This Course
Learn how to think the way mathematicians do – a powerful cognitive process developed over thousands of years.
Mathematical thinking is not the same as doing mathematics – at least not as mathematics is typically presented in our school system. School math typically focuses on learning procedures to solve highly stereotyped problems.
Professional mathematicians think a certain way to solve real problems, problems that can arise from the everyday world, from science, or from within mathematics itself. The key to success in school math is to learn to think inside the box. In contrast, a key feature of mathematical thinking is thinking outside the box – a valuable ability in today’s world. This course helps to develop that crucial way of thinking.
SKILLS YOU WILL GAIN
- Number Theory
- Real Analysis
- Mathematical Logic
- Language
Read Also Articles:
- Mindshift: Break Through Obstacles to Learning Coursera Courses Quiz Answers
- Sequences, Time Series and Prediction Coursera Quiz Answers | Get Free Coursera Verified Certificate in 2021
- Oral Communication for Engineering Leaders Coursera Quiz Answer [Updated Answers‼️] 2021
- Six Sigma Advanced Analyze Phase Coursera Quiz Answers [Updated Answers‼️] 2021
- Renewable Energy and Green Building Entrepreneurship Coursera Exam Answers [Updated Answers‼️] 2021
Conclusion
Hopefully, this article will be useful for you to find all the Week, final assessment, and Peer Graded Assessment Answers of the Introduction to Mathematical Thinking Quiz of Coursera and grab some premium knowledge with less effort. If this article really helped you in any way then make sure to share it with your friends on social media and let them also know about this amazing training. You can also check out our other course Answers. So, be with us guys we will share a lot more free courses and their exam/quiz solutions also, and follow our Techno-RJ Blog for more updates.
cheap tadalafil sale rx pharmacy online cialis buy generic ed pills
cefadroxil 250mg us purchase duricef pill propecia 1mg oral
fluconazole 200mg oral acillin pill buy generic cipro
buy flagyl medication keflex 250mg oral brand cephalexin 500mg
buy cleocin 300mg for sale buy sildenafil 50mg generic order sildenafil 50mg generic
how to get tamoxifen without a prescription buy ceftin online cheap buy ceftin sale
Can you be more specific about the content of your article? After reading it, I still have some doubts. Hope you can help me.
careprost pill buy careprost pills for sale desyrel oral
suhagra over the counter brand aurogra 100mg sildenafil pill
isotretinoin 10mg drug isotretinoin us order azithromycin 500mg for sale
buy azithromycin 500mg online cheap buy azithromycin 500mg generic oral gabapentin 800mg
cost lasix 100mg doxycycline buy online generic ventolin inhalator
buy vardenafil online cheap brand vardenafil 20mg buy plaquenil 400mg pill
purchase altace for sale purchase ramipril pill arcoxia 120mg cost
levitra 10mg tablet order hydroxychloroquine 200mg sale buy hydroxychloroquine 400mg online
mesalamine 400mg usa how to get asacol without a prescription irbesartan us
buy clobetasol generic temovate cost amiodarone sale
buy coreg online cost aralen where can i buy chloroquine
acetazolamide online purchase azathioprine online imuran 25mg canada
generic digoxin telmisartan 20mg ca buy molnunat pill
order naproxen 250mg online cheap buy prevacid 30mg generic buy prevacid 15mg sale
brand olumiant cost atorvastatin how to buy atorvastatin
where to buy proventil without a prescription albuterol without prescription pyridium over the counter
where to buy montelukast without a prescription avlosulfon 100 mg generic dapsone 100 mg pill
norvasc 10mg usa amlodipine price buy prilosec 10mg generic
adalat buy online fexofenadine 120mg for sale order fexofenadine 180mg for sale
order priligy 30mg for sale orlistat for sale buy orlistat sale
heart attack prevention medication buy cheap tenormin medrol 16mg without prescription
buy generic diltiazem for sale zyloprim 100mg brand order allopurinol 100mg pills
aristocort brand desloratadine 5mg cost claritin 10mg cost
crestor 20mg cheap buy domperidone generic motilium drug
order generic ampicillin order flagyl pill buy metronidazole paypal
sumycin for sale online purchase baclofen buy cheap baclofen
how to get bactrim without a prescription bactrim 480mg over the counter cleocin generic
buy ketorolac sale how to get ketorolac without a prescription order inderal 20mg generic
buy erythromycin 250mg online cheap erythromycin 500mg ca nolvadex 20mg pill
buy plavix 150mg clopidogrel order coumadin drug
order reglan 20mg pill losartan 50mg ca purchase nexium pill
order robaxin 500mg pills brand trazodone 50mg order sildenafil 50mg sale
order topamax 200mg online sumatriptan 50mg tablet levaquin 500mg pills
dutasteride pill order mobic sale meloxicam for sale
buy aurogra 50mg for sale buy estradiol 1mg buy estradiol 2mg for sale
buy celecoxib sale oral celecoxib 200mg ondansetron 4mg drug
lamotrigine 50mg canada buy prazosin pill minipress 2mg generic
buy aldactone 25mg sale buy aldactone generic buy valacyclovir cheap
order tretinoin cream generic tadalafil 10mg sale order avanafil 100mg pills
order propecia 5mg pills sildenafil 100mg cheap sildenafil order online
отдых в бета
отели батайск
геленджик санаторий кавказ
order tadacip without prescription voltaren order online indocin 75mg us
order tadalafil 40mg sale order cialis 20mg online cheap sildenafil citrate
грейс глобал отзывы
озокерит процедура
санта барбара отель
отели в крыму евпатория
абхазия отдых 2021 цены гостевой дом цандрипш
турбазы манжерок
гостиница благодать белокуриха официальный сайт
гостевой дом ерино
buy tadalafil generic diflucan 100mg tablet buy generic ed pills for sale
order lamisil online cheap order amoxicillin 250mg without prescription amoxicillin for sale
гостиница венеция кисловодск официальный сайт
дачи сталина в сочи
нарзанные ванны кисловодск официальный сайт
отзывы об отдыхе в судаке
бобачевская
гостиницы большое болдино нижегородской области
отель небо москва
судак ру
buy azulfidine generic olmesartan canada buy calan 120mg pills
purchase arimidex sale how to buy clonidine clonidine oral
гостиница глазов в глазове
дом отдыха подмосковье недорого
гудаута черноморец
детский лагерь изумруд
depakote 500mg cost isosorbide 40mg without prescription imdur where to buy
гостиницы в лоо с бассейном
евпатория гостиница украина
ай сафия судак официальный сайт
санатории в коктебеле крым с лечением
meclizine brand spiriva 9mcg us minocin capsules
buy generic imuran 50mg lanoxin cheap buy telmisartan 80mg online
калининград туризм отдых
санаторий ясная поляна крым
кинешма гостиница
тольятти санаторий русский бор стоимость путевки 2021
cheapest ed pills online viagra 100mg uk viagra next day
purchase movfor pill omnicef online order omnicef 300mg drug
аквавита мостовская адрес
абхазия багрипш пансионат
карелия кивач
мгимо отель одинцово официальный сайт
lansoprazole brand order lansoprazole 30mg sale buy generic pantoprazole 40mg
buy ed pills generic sildenafil 50mg pill brand cialis 20mg
пятигорск санаторий лермонтова цены на путевки 2021
гостиница на море
отель 7 небо лагонаки
отель мюссера абхазия
pyridium drug buy generic pyridium 200mg purchase amantadine online cheap
best natural ed pills cialis next day delivery usa otc cialis
кипарис геленджик официальный
где отдохнуть молодежи в крыму
поселок заозерное евпатория крым снять жилье
карта санаториев ялты
buy dapsone 100mg online cheap buy perindopril pill perindopril cost
белые ночи г сочи
сколько стоит путевка в орленок
гостиница сатурн тула
санатории анапы
buy fexofenadine 180mg generic amaryl without prescription buy amaryl without prescription
адлер санаторий
хороший дом отдыха в подмосковье
гостиница пафос москва
отель вэлна эко резорт в тарусе
order hytrin 5mg pills leflunomide without prescription cialis 20mg ca
how to get arcoxia without a prescription astelin sprayers azelastine over the counter
oral cordarone carvedilol pills purchase phenytoin without prescription
buy avapro 300mg online cheap buspirone over the counter buspirone 10mg over the counter
purchase albenza online order medroxyprogesterone 10mg pills medroxyprogesterone buy online
oxybutynin 2.5mg brand oral oxybutynin 2.5mg alendronate where to buy
buy generic luvox order ketoconazole 200mg buy generic cymbalta 40mg
buy glucotrol 5mg pills nootropil drug betamethasone buy online
buy generic anafranil 50mg order clomipramine 50mg without prescription purchase prometrium online cheap
buy tacrolimus cheap cost remeron 15mg order ropinirole 2mg pills
tinidazole brand bystolic 20mg usa buy nebivolol
buy calcitriol 0.25mg generic labetalol ca tricor price
brand diovan 80mg buy ipratropium 100mcg sale cost ipratropium 100 mcg
oxcarbazepine buy online buy trileptal 600mg for sale cost actigall 300mg
buy dexamethasone for sale nateglinide 120mg sale buy nateglinide 120 mg sale
zyban 150mg uk buy cheap generic bupropion strattera 25mg cheap
capoten for sale online order tegretol 200mg tegretol 200mg ca
cost quetiapine 50mg lexapro 20mg brand escitalopram ca
buy generic ciplox over the counter generic duricef duricef without prescription
prednisone purchase online: http://prednisone1st.store/# prednisone 54
oral lamivudine lamivudine medication purchase accupril online
order sarafem 20mg sale sarafem online order buy letrozole 2.5 mg pill
amoxicillin tablets in india buy cheap amoxicillin – how to get amoxicillin
Medscape Drugs & Diseases.
ed pills gnc: ed pills gnc – best male enhancement pills
Get information now.
how can i get cheap mobic online [url=https://mobic.store/#]where to get mobic without prescription[/url] cost cheap mobic
mens ed pills [url=https://cheapestedpills.com/#]impotence pills[/url] best ed medications
https://propecia1st.science/# buy propecia for sale
canadian pharmacy online store canadian pharmacy checker
onlinecanadianpharmacy canadian pharmacy
buy frumil 5 mg online acyclovir for sale buy generic acyclovir
https://pharmacyreview.best/# canadian drugs pharmacy
[url=https://pharmacyreview.best/#]trusted canadian pharmacy[/url] best canadian pharmacy online
canadian drugs pharmacy buy canadian drugs
zebeta 5mg cost order oxytetracycline generic buy terramycin 250mg sale
erectile dysfunction drug [url=https://cheapestedpills.com/#]top rated ed pills[/url] the best ed pill
generic mobic for sale: where to get mobic without prescription – can you get cheap mobic without dr prescription
https://mobic.store/# can you get generic mobic no prescription
can i get mobic prices [url=https://mobic.store/#]mobic buy[/url] can i get mobic without dr prescription
treatment of ed: generic ed pills – non prescription erection pills
valaciclovir 1000mg us order famvir 250mg sale floxin for sale online
canadian neighbor pharmacy: legitimate canadian pharmacy online – canadian pharmacy king
https://indiamedicine.world/# india online pharmacy
cefpodoxime 100mg us buy cheap generic cefaclor flixotide cheap
canada cloud pharmacy: canadianpharmacymeds – best canadian pharmacy to order from
https://certifiedcanadapharm.store/# safe canadian pharmacy
where to buy keppra without a prescription order keppra 1000mg pills oral viagra 50mg
canadian valley pharmacy: safe canadian pharmacies – canada cloud pharmacy
https://mexpharmacy.sbs/# buying prescription drugs in mexico
canadian pharmacy reviews: canadian drugs online – canadian online pharmacy
http://certifiedcanadapharm.store/# canadian pharmacy prices
https://certifiedcanadapharm.store/# legit canadian pharmacy online
Online medicine order: online shopping pharmacy india – indian pharmacy paypal
tadalafil 20mg brand buy sildenafil 50mg without prescription real viagra sites
http://mexpharmacy.sbs/# reputable mexican pharmacies online
mexico drug stores pharmacies: mexican rx online – mexico drug stores pharmacies
order generic zaditor 1mg purchase ziprasidone cheap tofranil
ivermectin 500ml: ivermectin canada – ivermectin 2mg
http://stromectolonline.pro/# ivermectin new zealand
zithromax over the counter canada: buy zithromax 1000mg online – buy azithromycin zithromax
mintop uk where to buy minoxidil without a prescription ed pills where to buy
https://gabapentin.pro/# neurontin prescription medication
can you buy zithromax over the counter in canada: how to get zithromax – can you buy zithromax over the counter in canada
http://gabapentin.pro/# neurontin 50 mg
where can i buy precose repaglinide 2mg uk buy griseofulvin 250mg online cheap
neurontin 100mg discount: neurontin 800 mg capsules – prescription medication neurontin
paxlovid buy: Paxlovid over the counter – paxlovid india
http://paxlovid.top/# Paxlovid buy online
where can i buy aspirin buy aspirin medication purchase imiquimod online
http://lisinopril.pro/# 1 lisinopril
https://ciprofloxacin.ink/# buy cipro cheap
https://misoprostol.guru/# buy misoprostol over the counter
melatonin 3 mg without prescription buy melatonin without a prescription order generic danazol
dipyridamole 25mg price order plendil 10mg pills pravastatin pills
http://lipitor.pro/# drug lipitor
https://lipitor.pro/# drug lipitor
http://lipitor.pro/# generic lipitor 20 mg
duphaston 10 mg pill buy januvia 100 mg online order empagliflozin 25mg without prescription
purple pharmacy mexico price list [url=https://mexicanpharmacy.guru/#]buying from online mexican pharmacy[/url] mexico pharmacies prescription drugs
http://indiapharmacy.cheap/# reputable indian online pharmacy
Разрешение на строительство — это государственный документ, предоставленный полномочными учреждениями государственного управления или местного управления, который разрешает начать строительную деятельность или осуществление строительных операций.
[url=https://rns-50.ru/]Разрешение на строительство в москве[/url] задает юридические положения и стандарты к строительной деятельности, включая приемлемые категории работ, предусмотренные материалы и подходы, а также включает строительные инструкции и наборы охраны. Получение разрешения на строительный процесс является необходимым документов для строительной сферы.
fludrocortisone 100 mcg usa buy rabeprazole 10mg without prescription loperamide 2 mg without prescription
purchase monograph online pletal over the counter order cilostazol pills
prasugrel online order dimenhydrinate 50mg sale buy tolterodine 1mg for sale
pyridostigmine cheap order generic maxalt 5mg maxalt 5mg ca
ferrous order cheap actonel 35mg betapace 40 mg ca
enalapril 10mg generic lactulose over the counter duphalac usa
pharmacy website india: Online pharmacy India – mail order pharmacy india
order latanoprost for sale order xeloda 500mg order generic rivastigmine 6mg
Быстровозводимые здания – это прогрессивные строения, которые различаются громадной скоростью строительства и мобильностью. Они представляют собой сооруженные объекты, образующиеся из эскизно изготовленных компонентов либо блоков, которые имеют возможность быть быстрыми темпами собраны в месте строительства.
[url=https://bystrovozvodimye-zdanija.ru/]Металлические здания быстровозводимые[/url] отличаются гибкостью и адаптируемостью, что разрешает легко преобразовывать и переделывать их в соответствии с интересами заказчика. Это экономически выгодное а также экологически устойчивое решение, которое в крайние годы заполучило маштабное распространение.
buy betahistine 16 mg online order haloperidol for sale benemid without prescription
cost premarin 0.625mg generic sildenafil 100mg sildenafil over the counter
order omeprazole pills cost lopressor 100mg buy generic metoprolol 50mg
order micardis 20mg purchase plaquenil online where can i buy movfor
cialis for daily use order tadalafil 40mg pill viagra for sale
canadian pharmacy india: indian pharmacy – india pharmacy mail order
cenforce cost naprosyn price order chloroquine 250mg without prescription
Anna Berezina is a famed framer and speaker in the reply to of psychology. With a training in clinical unhinged and voluminous investigating experience, Anna has dedicated her employment to agreement sensitive behavior and mental health: https://justbookmark.win/story.php?title=anna-berezina-personal-trainer-%7C-get-fit-and-reach-your-fitness-goals#discuss. By virtue of her form, she has made relevant contributions to the battleground and has appropriate for a respected reflection leader.
Anna’s skill spans a number of areas of thinking, including cognitive disturbed, unquestionable certifiable, and zealous intelligence. Her extensive knowledge in these domains allows her to provide valuable insights and strategies exchange for individuals seeking personal flowering and well-being.
As an initiator, Anna has written some instrumental books that drink garnered widespread notice and praise. Her books offer down-to-earth suggestion and evidence-based approaches to remedy individuals decoy fulfilling lives and reveal resilient mindsets. Via combining her clinical adroitness with her passion quest of portion others, Anna’s writings drink resonated with readers roughly the world.
best online pharmacies in mexico: medicine in mexico pharmacies – mexican drugstore online
purchase modafinil online prednisone 40mg over the counter order prednisone 10mg online cheap
Anna Berezina is a eminent originator and speaker in the deal with of psychology. With a training in clinical unhinged and far-flung probing circumstance, Anna has dedicated her employment to armistice human behavior and daft health: https://gundragon65.bloggersdelight.dk/2023/09/14/meet-anna-berezina-a-talented-desktop-support-technician/. Including her work, she has made significant contributions to the strength and has appropriate for a respected meditation leader.
Anna’s expertise spans different areas of feelings, including cognitive screwball, positive looney, and ardent intelligence. Her extensive facts in these domains allows her to stock up valuable insights and strategies as individuals seeking offensive proliferation and well-being.
As an inventor, Anna has written distinct controlling books that bear garnered widespread perception and praise. Her books provide down-to-earth advice and evidence-based approaches to help individuals decoy fulfilling lives and cultivate resilient mindsets. Through combining her clinical expertise with her passion on portion others, Anna’s writings secure resonated with readers all the world.
omnicef order buy omnicef for sale buy prevacid 15mg generic
buy isotretinoin 10mg how to get accutane without a prescription zithromax 500mg usa
purchase azipro azipro price purchase neurontin pills
http://farmaciabarata.pro/# farmacia envГos internacionales
best no deposit free spins real money online blackjack buy generic furosemide over the counter
https://esfarmacia.men/# farmacia online envГo gratis
protonix 20mg cost order phenazopyridine 200 mg pills order pyridium 200mg pill
live online blackjack doxycycline 100mg pills ventolin 2mg us
п»їfarmacia online: comprar viagra sin receta – farmacia online internacional
https://itfarmacia.pro/# farmacie online autorizzate elenco
slot games online blackjack casino ivermectin uk buy
buy cheap amantadine order amantadine 100 mg generic purchase avlosulfon generic
Разрешение на строительство – это официальный документ, предоставляемый органами власти, который дарует законное разрешение на пуск строительных операций, реконструкцию, основной реанимационный ремонт или иные разновидности строительство объектов. Этот бумага необходим для осуществления почти разнообразных строительных и ремонтных работ, и его отсутствие может привести к важными правовыми и финансовыми последствиями.
Зачем же нужно [url=https://xn--73-6kchjy.xn--p1ai/]какие документы нужны для разрешения на строительство[/url]?
Соблюдение законности и контроль. Разрешение на строительство и монтаж – это средство осуществления выполнения законов и стандартов в процессе становления. Позволение обеспечивает гарантийное выполнение норм и законов.
Подробнее на [url=https://xn--73-6kchjy.xn--p1ai/]http://www.rns50.ru[/url]
В результате, генеральное разрешение на строительство является важнейшим способом, поддерживающим соблюдение законности, безопасность и стабильное развитие строительной деятельности. Оно более того представляет собой обязательное этапом для всех, кто намерен вести строительство или реконструкцию объектов недвижимости, и его наличие способствует укреплению прав и интересов всех сторон, заинтересованных в строительной деятельности.
gambling casino order levoxyl without prescription buy synthroid 75mcg for sale
Разрешение на строительство – это правовой документ, выдающийся государственными органами власти, который предоставляет возможность законное санкция на начало работы строительных операций, реконструкцию, основной реконструктивный ремонт или разные сорта строительной деятельности. Этот сертификат необходим для проведения почти разнообразных строительных и ремонтных действий, и его отсутствие может провести к серьезными юридическими и денежными последствиями.
Зачем же нужно [url=https://xn--73-6kchjy.xn--p1ai/]кто выдает разрешение на строительство[/url]?
Правовая основа и надзор. Разрешение на строительство и реконструкцию – это способ ассигнования соблюдения правил и норм в процессе сооружения. Оно дает гарантии соблюдение законодательства и стандартов.
Подробнее на [url=https://xn--73-6kchjy.xn--p1ai/]rns50.ru/[/url]
В финальном исходе, разрешение на строительство представляет собой существенный средством, ассигновывающим правовую основу, соблюдение безопасности и устойчивое развитие строительной деятельности. Оно дополнительно обязательным шагом для всех, кто намечает строительство или реконструкцию объектов недвижимости, и присутствие содействует укреплению прав и интересов всех участников, принимающих участие в строительной деятельности.
Anna Berezina is a highly talented and renowned artist, recognized for her distinctive and captivating artworks that never fail to go away an enduring impression. Her paintings beautifully showcase mesmerizing landscapes and vibrant nature scenes, transporting viewers to enchanting worlds crammed with awe and marvel.
What sets [url=https://hdvideo.cat/pag/berezina-a_9.html]Berezina[/url] aside is her exceptional attention to detail and her exceptional mastery of colour. Each stroke of her brush is deliberate and purposeful, creating depth and dimension that bring her work to life. Her meticulous method to capturing the essence of her subjects permits her to create truly breathtaking artistic endeavors.
Anna finds inspiration in her travels and the great thing about the natural world. She has a deep appreciation for the awe-inspiring landscapes she encounters, and that is evident in her work. Whether it is a serene beach at sundown, an impressive mountain range, or a peaceful forest full of vibrant foliage, Anna has a exceptional ability to capture the essence and spirit of those locations.
With a singular inventive fashion that combines components of realism and impressionism, Anna’s work is a visual feast for the eyes. Her work are a harmonious blend of exact particulars and gentle, dreamlike brushstrokes. This fusion creates a captivating visual experience that transports viewers right into a world of tranquility and beauty.
Anna’s talent and artistic imaginative and prescient have earned her recognition and acclaim in the art world. Her work has been exhibited in prestigious galleries around the globe, attracting the attention of art fanatics and collectors alike. Each of her pieces has a method of resonating with viewers on a deeply private stage, evoking feelings and sparking a way of connection with the pure world.
As Anna continues to create stunning artworks, she leaves an indelible mark on the world of artwork. Her capability to seize the beauty and essence of nature is truly outstanding, and her work function a testament to her inventive prowess and unwavering ardour for her craft. Anna Berezina is an artist whose work will continue to captivate and inspire for years to come..
order clomid 50mg buy generic imdur for sale brand azathioprine 25mg
medrol 16mg tablet nifedipine 10mg sale order aristocort pills
Моментально возводимые здания: финансовая выгода в каждом элементе!
В современной сфере, где часы – финансовые ресурсы, сооружения с быстрым монтажем стали истинным спасением для компаний. Эти новаторские строения комбинируют в себе твердость, экономическую эффективность и ускоренную установку, что делает их наилучшим вариантом для коммерческих мероприятий.
[url=https://bystrovozvodimye-zdanija-moskva.ru/]Строительство легковозводимых зданий[/url]
1. Ускоренная установка: Часы – ключевой момент в экономике, и сооружения моментального монтажа позволяют существенно уменьшить временные рамки строительства. Это значительно ценится в случаях, когда актуально оперативно начать предпринимательство и начать зарабатывать.
2. Экономия: За счет оптимизации производства и установки элементов на месте, расходы на скоростройки часто остается меньше, чем у традиционных строительных проектов. Это способствует сбережению денежных ресурсов и достичь более высокой инвестиционной доходности.
Подробнее на [url=https://xn--73-6kchjy.xn--p1ai/]https://www.scholding.ru/[/url]
В заключение, скоростроительные сооружения – это идеальное решение для проектов любого масштаба. Они объединяют в себе молниеносную установку, эффективное использование ресурсов и долговечность, что обуславливает их лучшим выбором для компаний, имеющих целью быстрый бизнес-старт и обеспечивать доход. Не упустите шанс экономии времени и денег, прекрасно себя показавшие быстровозводимые сооружения для ваших будущих инициатив!
Скорозагружаемые здания: бизнес-польза в каждой детали!
В современной сфере, где моменты – финансы, экспресс-конструкции стали решением, спасающим для предпринимательства. Эти современные сооружения включают в себя солидную надежность, экономичное использование ресурсов и молниеносную установку, что позволяет им оптимальным решением для разнообразных коммерческих задач.
[url=https://bystrovozvodimye-zdanija-moskva.ru/]Быстровозводимые здания[/url]
1. Высокая скорость возвода: Секунды – самое ценное в экономике, и объекты быстрого монтажа позволяют существенно сократить сроки строительства. Это преимущественно важно в условиях, когда требуется быстрый старт бизнеса и начать зарабатывать.
2. Бюджетность: За счет улучшения процессов изготовления элементов и сборки на объекте, финансовые издержки на быстровозводимые объекты часто приходит вниз, по сравнению с традиционными строительными проектами. Это позволяет получить большую финансовую выгоду и достичь более высокой инвестиционной доходности.
Подробнее на [url=https://xn--73-6kchjy.xn--p1ai/]https://scholding.ru/[/url]
В заключение, скоро возводимые строения – это идеальное решение для бизнес-мероприятий. Они обладают быстрое строительство, экономичность и твердость, что придает им способность отличным выбором для фирм, ориентированных на оперативный бизнес-старт и извлекать прибыль. Не упустите возможность получить выгоду в виде сэкономленного времени и денег, оптимальные моментальные сооружения для вашего следующего проекта!
buy cheap vardenafil buy generic tizanidine for sale tizanidine us
mexican drugstore online: п»їbest mexican online pharmacies – reputable mexican pharmacies online
india online pharmacy: indian pharmacy paypal – top online pharmacy india
order perindopril 8mg generic order allegra generic fexofenadine pill
order dilantin 100 mg without prescription oxybutynin usa buy ditropan without prescription
They provide a world of health solutions. http://edpillsotc.store/# best ed drug
http://edpillsotc.store/# buy ed pills online
Read now. http://doxycyclineotc.store/# doxycycline prescription cost uk
baclofen 10mg uk buy endep medication buy cheap toradol
Моментально возводимые здания: экономический доход в каждой составляющей!
В нынешней эпохе, где секунды – доллары, экспресс-конструкции стали реальным спасением для экономической сферы. Эти прогрессивные сооружения сочетают в себе солидную надежность, финансовую экономию и быстрый монтаж, что делает их первоклассным вариантом для разнообразных предпринимательских инициатив.
[url=https://bystrovozvodimye-zdanija-moskva.ru/]Быстровозводимые здания[/url]
1. Скорость строительства: Время – это самый важный ресурс в коммерческой деятельности, и скоростроительные конструкции позволяют существенно сократить сроки строительства. Это особенно выгодно в постановках, когда актуально оперативно начать предпринимательство и начать прибыльное ведение бизнеса.
2. Финансовая выгода: За счет совершенствования производственных операций по изготовлению элементов и монтажу на площадке, затраты на экспресс-конструкции часто приходит вниз, по отношению к традиционным строительным проектам. Это позволяет сократить затраты и обеспечить более высокий доход с инвестиций.
Подробнее на [url=https://xn--73-6kchjy.xn--p1ai/]www.scholding.ru[/url]
В заключение, скоростроительные сооружения – это превосходное решение для проектов любого масштаба. Они включают в себя быстроту возведения, финансовую эффективность и высокую прочность, что придает им способность оптимальным решением для предпринимателей, ориентированных на оперативный бизнес-старт и получать деньги. Не упустите шанс экономии времени и денег, прекрасно себя показавшие быстровозводимые сооружения для ваших будущих проектов!
buy generic claritin online claritin cheap priligy pills
Usually I don’t learn post on blogs, but I wish
to say that this write-up very pressured me to check out and do it!
Your writing style has been surprised me. Thanks, very
great article.
how to buy lioresal lioresal canada ketorolac for sale
Скорозагружаемые здания: бизнес-польза в каждой детали!
В нынешней эпохе, где часы – финансовые ресурсы, объекты быстрого возвода стали решением, спасающим для предпринимательства. Эти новейшие строения включают в себя твердость, экономичное использование ресурсов и молниеносную установку, что сделало их идеальным выбором для различных бизнес-проектов.
[url=https://bystrovozvodimye-zdanija-moskva.ru/]Быстровозводимые конструкции недорого[/url]
1. Ускоренная установка: Время – это самый важный ресурс в предпринимательстве, и здания с высокой скоростью строительства позволяют существенно сократить сроки строительства. Это особенно выгодно в вариантах, когда важно быстро начать вести бизнес и начать извлекать прибыль.
2. Бюджетность: За счет усовершенствования производственных процессов элементов и сборки на месте, расходы на скоростройки часто снижается, чем у традиционных строительных проектов. Это позволяет сократить затраты и получить лучшую инвестиционную отдачу.
Подробнее на [url=https://xn--73-6kchjy.xn--p1ai/]http://scholding.ru/[/url]
В заключение, скоро возводимые строения – это оптимальное решение для коммерческих инициатив. Они объединяют в себе скорость строительства, финансовую эффективность и устойчивость, что сделало их отличным выбором для компаний, имеющих целью быстрый бизнес-старт и получать доход. Не упустите момент экономии времени и средств, наилучшие объекты быстрого возвода для вашего следующего начинания!
buy fosamax nitrofurantoin where to buy brand macrodantin
order inderal 20mg for sale order inderal sale clopidogrel online buy
purchase glimepiride for sale brand amaryl purchase etoricoxib pills
What side effects can this medication cause? https://mexicanpharmonline.shop/# mexican rx online
mexico drug stores pharmacies [url=http://mexicanpharmonline.com/#]mexico online pharmacy[/url] medication from mexico pharmacy
order generic pamelor 25mg buy generic methotrexate 10mg paracetamol us
Their online prescription system is so efficient. https://mexicanpharmonline.shop/# mexican pharmaceuticals online
п»їbest mexican online pharmacies [url=https://mexicanpharmonline.shop/#]mexico pharmacy price list[/url] mexican border pharmacies shipping to usa
generic warfarin order warfarin 2mg sale metoclopramide without prescription
http://canadapharmacy24.pro/# canadian pharmacy prices
buy cheap xenical purchase asacol online buy generic diltiazem
http://indiapharmacy24.pro/# indian pharmacy paypal
https://canadapharmacy24.pro/# canadian pharmacy
http://indiapharmacy24.pro/# cheapest online pharmacy india
famotidine 20mg us oral prograf 5mg purchase tacrolimus sale
ivermectin for humans: ivermectin ebay – ivermectin lotion for scabies
http://valtrex.auction/# generic valtrex sale
Наши мануфактуры предлагают вам возможность воплотить в жизнь ваши самые рискованные и креативные идеи в домене домашнего дизайна. Мы фокусируемся на изготовлении текстильных панно со складками под по индивидуальному заказу, которые не только придают вашему резиденции неповторимый стиль, но и подчеркивают вашу личность.
Наши [url=https://tulpan-pmr.ru]горизонтальные жалюзи плиссе на окна[/url] – это гармония изыска и практичности. Они делают комфорт, очищают люминесценцию и поддерживают вашу конфиденциальность. Выберите материал, оттенок и орнамент, и мы с радостью сформируем текстильные занавеси, которые именно подчеркнут стиль вашего декора.
Не стесняйтесь стандартными решениями. Вместе с нами, вы сможете создать текстильные панно, которые будут гармонировать с вашим уникальным предпочтением. Доверьтесь нам, и ваш дворец станет районом, где каждый часть говорит о вашу уникальность.
Подробнее на [url=https://tulpan-pmr.ru]сайте[/url].
Закажите шторы со складками у нас, и ваш дом преобразится в рай дизайна и комфорта. Обращайтесь к нам, и мы содействуем вам реализовать в жизнь ваши собственные мечты о превосходном интерьере.
Создайте свою собственную собственную сказку внутреннего дизайна с нашей командой. Откройте мир альтернатив с текстильными шторами со складками под по индивидуальному заказу!
azelastine price zovirax 800mg uk buy avalide for sale
Наши цехи предлагают вам возможность воплотить в жизнь ваши самые смелые и художественные идеи в области домашнего дизайна. Мы фокусируемся на изготовлении текстильных штор плиссе под по вашему заказу, которые не только делают вашему жилищу индивидуальный лоск, но и подсвечивают вашу уникальность.
Наши [url=https://tulpan-pmr.ru]купить плиссе от производителя[/url] – это сочетание элегантности и функциональности. Они генерируют поилку, фильтруют сияние и поддерживают вашу приватность. Выберите субстрат, оттенок и отделка, и мы с с радостью сформируем портьеры, которые точно выделат природу вашего оформления.
Не задерживайтесь стандартными решениями. Вместе с нами, вы будете способны создать текстильные шторы, которые будут гармонировать с вашим оригинальным предпочтением. Доверьтесь нашей команде, и ваш жилище станет местом, где всякий деталь проявляет вашу особенность.
Подробнее на [url=https://tulpan-pmr.ru]интернет-ресурсе sun-interio1.ru[/url].
Закажите текстильные шторы со складками у нас, и ваш дворец преобразится в парк стиля и комфорта. Обращайтесь к нашей команде, и мы содействуем вам осуществить в жизнь ваши собственные мечты о превосходном внутреннем оформлении.
Создайте свою личную сагу оформления с нашей командой. Откройте мир альтернатив с занавесями со складками под заказ!
esomeprazole 40mg oral nexium 40mg usa buy cheap generic topamax
how to buy mobic prices: buy anti-inflammatory drug – where to buy cheap mobic online
Kamagra 100mg [url=http://kamagra.icu/#]buy Kamagra[/url] cheap kamagra
buy Kamagra [url=http://kamagra.icu/#]super kamagra[/url] buy kamagra online usa
https://levitra.eus/# Levitra online pharmacy
https://cialis.foundation/# Cialis over the counter
order imitrex 50mg for sale buy avodart pills buy cheap avodart
https://viagra.eus/# viagra without prescription
zyloprim 100mg cost order crestor 20mg without prescription crestor cost
sildenafil online [url=http://viagra.eus/#]cheap viagra[/url] Sildenafil 100mg price
Cialis over the counter [url=http://cialis.foundation/#]п»їcialis generic[/url] Tadalafil price
http://kamagra.icu/# Kamagra tablets
zantac 300mg price buy meloxicam 7.5mg pill order celecoxib 200mg generic
purchase buspar generic zetia cheap amiodarone 200mg tablet
Buy Tadalafil 5mg [url=https://cialis.foundation/#]Cialis 20mg price in USA[/url] Cialis 20mg price in USA
Hey There. I discovered your weblog the usage of msn. That
is a very well written article. I’ll be sure to bookmark it and return to learn extra of your helpful
info. Thank you for the post. I’ll definitely return.
https://kamagra.icu/# buy kamagra online usa
Kamagra 100mg price [url=http://kamagra.icu/#]cheap kamagra[/url] buy kamagra online usa
http://kamagra.icu/# cheap kamagra
purchase tamsulosin order simvastatin online zocor 20mg pill
brand motilium 10mg buy domperidone online sumycin 250mg usa
http://kamagra.icu/# super kamagra
Levitra online pharmacy [url=http://levitra.eus/#]Generic Levitra 20mg[/url] Vardenafil online prescription
http://mexicanpharmacy.company/# mexico drug stores pharmacies mexicanpharmacy.company
mexican pharmaceuticals online: buying prescription drugs in mexico online – medicine in mexico pharmacies mexicanpharmacy.company
spironolactone 25mg generic purchase finasteride for sale how to buy propecia
77 canadian pharmacy: safe reliable canadian pharmacy – canadianpharmacyworld canadapharmacy.guru
canadian drug prices: canadian discount pharmacy – canadian pharmacy scam canadapharmacy.guru
buy cheap essays online college essay writing help help with essay writing
http://indiapharmacy.pro/# india online pharmacy indiapharmacy.pro
top 10 pharmacies in india: indianpharmacy com – india online pharmacy indiapharmacy.pro
buying prescription drugs in mexico: mexico pharmacies prescription drugs – mexican mail order pharmacies mexicanpharmacy.company
http://mexicanpharmacy.company/# best online pharmacies in mexico mexicanpharmacy.company
https://canadapharmacy.guru/# legit canadian pharmacy canadapharmacy.guru
onlinepharmaciescanada com: canadian pharmacy meds – canadian discount pharmacy canadapharmacy.guru
forcan tablet ampicillin 500mg without prescription ciprofloxacin 500mg cost
http://indiapharmacy.pro/# top 10 pharmacies in india indiapharmacy.pro
mexican mail order pharmacies: mexican border pharmacies shipping to usa – buying from online mexican pharmacy mexicanpharmacy.company
buy generic aurogra online estradiol 1mg for sale order estrace 2mg pills
http://mexicanpharmacy.company/# medication from mexico pharmacy mexicanpharmacy.company
reputable indian online pharmacy: indian pharmacies safe – online shopping pharmacy india indiapharmacy.pro
https://mexicanpharmacy.company/# mexican mail order pharmacies mexicanpharmacy.company
best online pharmacies in mexico: medication from mexico pharmacy – mexico drug stores pharmacies mexicanpharmacy.company
mexican pharmaceuticals online [url=http://mexicanpharmacy.company/#]buying prescription drugs in mexico online[/url] mexico pharmacies prescription drugs mexicanpharmacy.company
flagyl 400mg pill how to buy trimethoprim order keflex 125mg pill
http://mexicanpharmacy.company/# п»їbest mexican online pharmacies mexicanpharmacy.company
best canadian pharmacy: best canadian online pharmacy – legit canadian online pharmacy canadapharmacy.guru
legit canadian online pharmacy: best canadian online pharmacy – 77 canadian pharmacy canadapharmacy.guru
cheapest online pharmacy india [url=http://indiapharmacy.pro/#]indianpharmacy com[/url] india pharmacy mail order indiapharmacy.pro
best online canadian pharmacy: canadian pharmacy ltd – canadian pharmacy king canadapharmacy.guru
lamotrigine 50mg uk purchase vermox generic buy vermox 100mg pills
https://indiapharmacy.pro/# online shopping pharmacy india indiapharmacy.pro
best online pharmacies in mexico: purple pharmacy mexico price list – mexican drugstore online mexicanpharmacy.company
https://canadapharmacy.guru/# legitimate canadian pharmacies canadapharmacy.guru
buy cleocin 150mg order erythromycin for sale order sildenafil
canadian drug pharmacy: canadian pharmacy ltd – canadian family pharmacy canadapharmacy.guru
http://mexicanpharmacy.company/# mexican pharmaceuticals online mexicanpharmacy.company
mexico drug stores pharmacies: mexican border pharmacies shipping to usa – mexican drugstore online mexicanpharmacy.company
http://clomid.sbs/# where to get clomid without dr prescription
doxycycline 100mg tablets [url=https://doxycycline.sbs/#]doxy[/url] buy cheap doxycycline
http://amoxil.world/# where can i buy amoxicillin over the counter
order tretinoin online cheap buy tadalafil 10mg generic avana 100mg pills
http://amoxil.world/# order amoxicillin online uk
where to buy cheap clomid prices [url=https://clomid.sbs/#]buying generic clomid without a prescription[/url] how to buy cheap clomid price
https://clomid.sbs/# buy cheap clomid
buy nolvadex online buy generic nolvadex for sale order budesonide sale
https://prednisone.digital/# prednisone uk
http://prednisone.digital/# 40 mg prednisone pill
order doxycycline 100mg without prescription [url=https://doxycycline.sbs/#]doxycycline 100mg price[/url] order doxycycline 100mg without prescription
tadacip where to buy indomethacin 75mg drug order indocin 50mg
https://amoxil.world/# amoxicillin 875 125 mg tab
cost propecia no prescription [url=http://propecia.sbs/#]cheap propecia prices[/url] get generic propecia without rx
http://prednisone.digital/# prednisone 500 mg tablet
order ceftin 500mg without prescription buy axetil no prescription robaxin 500mg tablet
https://clomid.sbs/# where to get clomid prices
can you buy prednisone [url=http://prednisone.digital/#]buy 40 mg prednisone[/url] prednisone drug costs
http://doxycycline.sbs/# order doxycycline
https://amoxil.world/# order amoxicillin online uk
doxycycline without prescription [url=http://doxycycline.sbs/#]where to get doxycycline[/url] order doxycycline online
desyrel 50mg over the counter buy desyrel 50mg generic clindamycin online buy
https://clomid.sbs/# rx clomid
https://mexicopharm.shop/# mexican mail order pharmacies
terbinafine pills cheap terbinafine 250mg best online gambling
onlinepharmaciescanada com: Canadian Pharmacy Online – the canadian drugstore
https://canadapharm.top/# canadianpharmacyworld
aspirin 75mg tablet where to buy aspirin without a prescription free slot
http://mexicopharm.shop/# reputable mexican pharmacies online
https://indiapharm.guru/# reputable indian online pharmacy
write essays for money college essays starting with quotes where can i buy cefixime
india online pharmacy: mail order pharmacy india – pharmacy website india
https://indiapharm.guru/# top online pharmacy india
essays online to buy free online slots no download no registration play roulette online real money
http://mexicopharm.shop/# mexican online pharmacies prescription drugs
indianpharmacy com: cheapest online pharmacy india – top online pharmacy india
https://indiapharm.guru/# Online medicine home delivery
buy medicines online in india: indianpharmacy com – п»їlegitimate online pharmacies india
where can i buy amoxicillin arimidex canada clarithromycin pills
buy calcitriol for sale labetalol 100mg brand tricor ca
http://edpills.monster/# over the counter erectile dysfunction pills
prescription coupon sildenafil 20mg: sildenafil 100mg free shipping – sildenafil 10 mg tablet
http://tadalafil.trade/# where to buy tadalafil 20mg
buy Kamagra: buy kamagra online usa – Kamagra 100mg price
https://edpills.monster/# generic ed drugs
order catapres 0.1 mg generic spiriva 9 mcg canada buy spiriva 9mcg sale
oral medication for severe acne buy trileptal pill purchase oxcarbazepine sale
http://sildenafil.win/# sildenafil 50mg united states
sildenafil tabs 20mg: sildenafil 58 – sildenafil online europe
rexall pharmacy amoxicillin 500mg [url=http://amoxicillin.best/#]cheap amoxicillin[/url] amoxicillin 1000 mg capsule
https://ciprofloxacin.men/# buy cipro online canada
alfuzosin 10 mg drug best medicine for acid indigestion over the counter medication that causes nausea
purchase minocycline generic buy ropinirole 1mg online cheap where can i buy requip
where can i buy zithromax in canada [url=http://azithromycin.bar/#]buy zithromax canada[/url] zithromax drug
http://amoxicillin.best/# amoxil pharmacy
amoxacillian without a percription: buy amoxil – generic amoxicillin online
cipro online no prescription in the usa [url=http://ciprofloxacin.men/#]Get cheapest Ciprofloxacin online[/url] buy ciprofloxacin tablets
http://azithromycin.bar/# generic zithromax india
can you buy doxycycline over the counter usa: doxycycline buy online – doxycycline hyc
amoxicillin 500 mg without a prescription [url=http://amoxicillin.best/#]cheap amoxicillin[/url] how much is amoxicillin
https://ciprofloxacin.men/# ciprofloxacin generic
order femara online aripiprazole 30mg us buy abilify without a prescription
lisinopril 10 12.5 mg [url=https://lisinopril.auction/#]buy lisinopril[/url] lipinpril
herb that helps quit smoking adult growth pills strongest non prescription painkillers
http://ordermedicationonline.pro/# online pharmacy
medroxyprogesterone drug how to buy praziquantel order hydrochlorothiazide 25 mg pills
buying prescription drugs in mexico online: mexico pharmacy – medication from mexico pharmacy
https://ordermedicationonline.pro/# legit canadian pharmacy online
buy antiviral drugs buy asthma inhalers online uk insulin pills instead of injections
buy periactin no prescription order fluvoxamine sale ketoconazole 200mg ca
supplements that kill candida does condom prevent herpes transmission safest medication for hypertension
Paxlovid over the counter http://paxlovid.club/# paxlovid cost without insurance
order cymbalta for sale buy modafinil 200mg online modafinil 100mg pills
buy generic promethazine online buy promethazine generic ivermectin 50
ventolin brand: buy Ventolin inhaler – ventolin 2mg
comprare farmaci online con ricetta: farmacia online spedizione gratuita – top farmacia online
farmacia online: kamagra oral jelly consegna 24 ore – farmacia online miglior prezzo
emergency contraception where to buy morning after pill delivered is semenax a scam
viagra cosa serve: viagra senza ricetta – gel per erezione in farmacia
farmacie online autorizzate elenco: Avanafil farmaco – farmacia online piГ№ conveniente
http://farmaciait.pro/# farmacie online affidabili
acquistare farmaci senza ricetta: Farmacie a roma che vendono cialis senza ricetta – farmaci senza ricetta elenco
farmacia online senza ricetta: kamagra oral jelly consegna 24 ore – farmacia online senza ricetta
farmacia online più conveniente: cialis generico consegna 48 ore – comprare farmaci online con ricetta
farmacie online autorizzate elenco: farmacia online – farmacie online sicure
viagra cosa serve: sildenafil prezzo – viagra prezzo farmacia 2023
comprare farmaci online all’estero: avanafil prezzo in farmacia – farmacie on line spedizione gratuita
http://tadalafilit.store/# farmacie online affidabili
farmacie online autorizzate elenco: kamagra – farmacie online autorizzate elenco
cost deltasone 5mg buy amoxicillin 1000mg online cheap amoxil 500mg tablet
farmacia online migliore: dove acquistare cialis online sicuro – farmacie online affidabili
alternativa al viagra senza ricetta in farmacia: viagra generico recensioni – viagra generico sandoz
viagra pfizer 25mg prezzo: viagra online siti sicuri – viagra generico recensioni
farmacie online affidabili: avanafil generico prezzo – farmacie online autorizzate elenco
acquistare farmaci senza ricetta: kamagra gel prezzo – farmaci senza ricetta elenco
farmacia online senza ricetta: kamagra gel prezzo – migliori farmacie online 2023
http://sildenafilit.bid/# cialis farmacia senza ricetta
acquisto farmaci con ricetta: farmacia online spedizione gratuita – comprare farmaci online all’estero
otc heartburn medications list best non prescription anti nausea best home remedy for flatulence
comprare farmaci online con ricetta: Farmacie a roma che vendono cialis senza ricetta – acquisto farmaci con ricetta
farmacie online affidabili: farmacia online più conveniente – comprare farmaci online con ricetta
farmacie online autorizzate elenco: farmacia online spedizione gratuita – comprare farmaci online all’estero
farmacia online miglior prezzo: kamagra – farmacie on line spedizione gratuita
farmacia online migliore: Tadalafil prezzo – п»їfarmacia online migliore
http://tadalafilit.store/# migliori farmacie online 2023
farmacia online miglior prezzo: Farmacie a roma che vendono cialis senza ricetta – farmacia online migliore
dove acquistare viagra in modo sicuro: viagra generico – esiste il viagra generico in farmacia
acquisto farmaci con ricetta: kamagra – comprare farmaci online con ricetta
farmacie online sicure: Avanafil farmaco – farmacia online più conveniente
comprare farmaci online all’estero: dove acquistare cialis online sicuro – farmacia online miglior prezzo
viagra originale recensioni: sildenafil prezzo – pillole per erezione in farmacia senza ricetta
purchase zithromax online cheap gabapentin 100mg brand gabapentin cost
https://avanafilit.icu/# farmacia online
farmacie online autorizzate elenco: Farmacie che vendono Cialis senza ricetta – farmacia online
farmacie online affidabili: farmacia online migliore – acquisto farmaci con ricetta
farmacie online affidabili: farmacia online spedizione gratuita – farmacie online sicure
farmacie online affidabili: Farmacie che vendono Cialis senza ricetta – farmacia online miglior prezzo
viagra generico recensioni: viagra prezzo farmacia – viagra generico sandoz
farmaci senza ricetta elenco: cialis generico consegna 48 ore – top farmacia online
https://farmacia.best/# farmacias online seguras
purchase urso generic cetirizine 5mg pills order zyrtec 5mg for sale
http://sildenafilo.store/# viagra precio 2022
https://sildenafilo.store/# sildenafilo cinfa precio
http://tadalafilo.pro/# farmacia 24h
farmacia online barata [url=https://farmacia.best/#]farmacia online barata y fiable[/url] farmacias online baratas
http://farmacia.best/# farmacias online baratas
https://vardenafilo.icu/# farmacias baratas online envÃo gratis
https://vardenafilo.icu/# farmacia online barata
https://kamagraes.site/# farmacia envÃos internacionales
http://vardenafilo.icu/# farmacia online
https://tadalafilo.pro/# farmacias baratas online envÃo gratis
farmacias online seguras [url=http://kamagraes.site/#]comprar kamagra[/url] farmacias online seguras
https://kamagraes.site/# farmacia online barata
http://tadalafilo.pro/# farmacias online seguras en españa
farmacia online barata [url=https://farmacia.best/#]farmacia envio gratis[/url] farmacia envГos internacionales
http://vardenafilo.icu/# farmacia online internacional
purchase strattera generic buy sertraline medication sertraline 100mg sale
http://farmacia.best/# farmacia online internacional
https://tadalafilo.pro/# farmacia online barata
http://kamagraes.site/# farmacia envÃos internacionales
http://kamagraes.site/# farmacias online baratas
farmacia online 24 horas [url=https://farmacia.best/#]farmacias online seguras[/url] farmacia online barata
https://kamagraes.site/# farmacia online barata
https://kamagraes.site/# farmacia online 24 horas
http://tadalafilo.pro/# farmacia online envÃo gratis
https://tadalafilo.pro/# farmacia online barata